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Theory and Experiments in Autonomous Sensor-Based Motion

Planning with Applications for Flight Planetary Microrovers

by

Sharon Lynn Laubach

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

With the success of Mars Pathfinder’s Sojourner rover, a new era of planetary ex-

ploration has opened, with demand for highly capable mobile robots. These robots

must be able to traverse long distances over rough, unknown terrain autonomously,

under severe resource constraints. Much prior work in mobile robot path plan-

ning has been based on assumptions that are not truly applicable to navigation

through planetary terrains. Based on the author’s firsthand experience with the

Mars Pathfinder mission, this work reviews issues which are critical for success-

ful autonomous navigation of planetary rovers. No current methodology addresses

all of these constraints. We next develop the sensor-based “Wedgebug” motion-

planning algorithm. This algorithm is complete, correct, requires minimal memory

for storage of its world model, and uses only on-board sensors, which are guided by

the algorithm to efficiently sense only the data needed for motion planning, while

avoiding unnecessary robot motion. The planner has the additional advantage of

producing locally-optimal paths, and is suitable for robots with a field-of-view lim-

ited in both downrange and angular scope, for a variety of applications including

planetary navigation. This work includes the proof of completeness and correctness

of the Wedgebug algorithm, and in particular provides a corrected, detailed proof

of a key result required for the proof of completeness of the Wedgebug algorithm

(and for the TangentBug algorithm which inspired this approach). In addition, we
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extend this result to a broader class of environments. The implementation of a

version of Wedgebug, called “RoverBug,” on the Rocky7 Mars Rover prototype at

the Jet Propulsion Laboratory (JPL) is described, and experimental results from

operation in simulated martian terrain are presented.
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Chapter 1

Laying the Course

You have ability to over-
come obstacles on
the way to success.

—from a fortune cookie

It is rather hard work: there is now no smooth road into
the future: but we go round, or scramble over the obstacles.

—D. H. Lawrence, Lady Chatterley’s Lover

1.1 Introduction

In science fiction, robots are tools, characters, objects of fear or of tremendous

aid—and nearly always autonomous. Although today’s researchers are still far from

achieving writers’ dreams of fully autonomous machines, significant advances have

been made in recent years, particularly in the area of robotic motion planning. Im-

proved, cost-effective sensors have increased the information that robots can learn

about their environment, spurring interest in sending robots to places humans can-

not, will not, or should not go: hazardous waste sites, damaged nuclear reactors,

deep ocean trenches, and deep space.

Such missions—into areas which are unexplored, and about whose layouts only

sketchy information may exist—are greatly facilitated by robots which are able to

not only sense their environs, but to react accordingly as they navigate toward their

goal. Sensor-based motion planning [9], as a field, arose to address this issue. The

basic sensor-based “find-goal” problem is formulated as follows: the robot is situated



2

in unknown terrain, usually with an associated coordinate frame. The robot is given

a goal (a coordinate point), generally outside of its current sensor range. Using only

its own on-board sensors for gathering information, the robot must detect and avoid

obstacles as it moves incrementally toward the goal.

The urgency of adding autonomous motion-planning capabilities to robots rises

dramatically in the case of planetary exporation. (See Chapter 2 for an extensive

discussion of this subject.) The requirements of newer missions are increasingly

unattainable without the aid of mobile robots utilising advanced autonomous tech-

niques. However, these missions are still subject to the severe constraints of flight

hardware, such as power, mass, and cost, which in turn affect the available sensors,

memory, and computational power. These topics are treated in detail in Chapter

2, and constitute the primary motivation for the work presented in the subsequent

chapters. We note that the basic sensor-based problem applies here, with the caveat

that the algorithm must be tailored to fit within the available computational frame-

work and the given sensor suite. In addition, the robot is expected to provably

achieve the designated goal, so resources (including time) are not wasted correcting

errors in final robot position before the mission can continue.

Although this work is strongly motivated by space applications, the resulting

algorithm can be used to advantage in a variety of scenarios, such as hazardous or

radioactive waste cleanup, ocean floor exploration, etc., where sensors and environ-

mentally shielded computational prowess are at a premium. Given a sensor array

with very limited coverage, both angular and downrange, the robot must conserve

both sensor queries (expensive in memory and processing of sensor data) and robot

motion (expensive in positioning error and possibly energy). The robot must repre-

sent detected obstacles simply, to conserve both memory and computational effort.

And finally, the robot must successfully avoid obstacles while maintaining prov-

able incremental progess toward the goal, through unbounded, rough terrain, until

the goal is achieved. The Wedgebug algorithm, developed in this thesis, fulfills all

of these supplemental requirements for the sensor-based rover “find-goal” problem,

with the additional property that the resulting paths are locally optimal. Locally
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optimal paths consist of segments which are optimal as measured by path length,

when only obstacles able to be sensed by the robot along that segment are consid-

ered. As the range and angular coverage of the robot sensors approach infinity and

360 degrees, respectively, the locally optimal path approaches the globally optimal

solution in many cases, particularly if the robot sensors are able to “see over” the

surrounding obstacles to rover mobility. The name of the algorithm, Wedgebug, de-

rives from its relation to the Tangent Bug algorithm developed by Kamon, Rimon,

and Rivlin [23] in 1995, whose name in turn acknowledges the globally-convergent,

reactive nature of the “Bug” algorithms first developed by Lumelsky and Stepanov

in 1987 [40]. These algorithms, and their exact relation to Wedgebug, are discussed

in more detail in Section 1.2.

The related RoverBug algorithm, also developed in this thesis, is the implemen-

tation of the Wedgebug concept on an actual vehicle, the Mars Rover prototype,

Rocky7. RoverBug extends Wedgebug to the case when the robot sensor array is

capable of imaging regions beyond the immediate obstacles, and assimilates vari-

ous idiosyncracies of the Rocky7 system. The RoverBug program has been tested

extensively in rough, naturalistic terrain, and has demonstrated outstanding per-

formance.

1.2 Historical Overview

We first present a brief overview of the major concepts in, and historical categories

of, robot motion planning. Later, we review related work in the specific area of

rover motion planning.

1.2.1 Robot Motion Planning

Motion planning as a field can be generally split by three guiding philosophies: clas-

sical path planning, heuristic planning, and “complete and correct” sensor-based path

planning. In order to show where Wedgebug fits in this hierarchy, we discuss each

philosophy in turn, along with the associated advantages and disadvantages of each
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approach. In the discourse which follows, the robot is assumed to be modelled as a

point located at x in a two-dimensional environment∗, and is capable of holonomic

motion. Obstacles block the robot’s sensors as well as its motion. The free space, F,

comprises the allowable regions for robot traversal: the 2D environment, minus the

(interiors of) the obstacles. Finally, unless otherwise specified, the robot’s sensors

have 360◦ angular coverage and limited range, R.

Classical motion planners assume that full knowledge of the geometry of the

robot’s environs is known a priori. However, the classical planners have the use-

ful properties of correctness and completeness. A path is correct if it lies wholly

within F, and, if the goal is reachable, connects the robot’s initial position with the

goal. Whereas any useful path planner produces correct paths, completeness is a

highly desirable virtue: the planner will generate a path if one is possible, and will

halt otherwise in finite time. Latombe describes classical planners in some detail

in his book, Robot Motion Planning [36], in which he splits the classical planners

(a) roadmap (b) exact cell decomposition

(c) approx. cell decomposition

goal

(d) potential field

Figure 1.1: Examples of types of “classical” planners
∗The 2D workspace is chosen for simplicity. Most of the techniques described here extend

to higher dimensional spaces.
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into three major categories: roadmap algorithms, cell decomposition methods, and

potential field approaches. The first two categories seek to create maps or channels

for robot navigation (see Fig. 1.1(a)). Examples of roadmap algorithms include the

visibility and reduced visibility (also known as tangent) graphs [57],[36], Voronoi

graphs [58], and Canny’s silhouette method [7]. Each of these schemes constructs

a set of one-dimensional curves which encapsulate the topology of the free space,

and serve as a system of “freeways,” complete with methods for entry and exit, to

enable the robot to traverse from start to goal. Cell decomposition algorithms, on

the other hand, come in two varieties: those which break F into an exact polygonal

decomposition (Fig. 1.1(b)), and approximate techniques which overlay a regular

grid (with possible local adaptations in resolution) on the entire world model (Fig.

1.1(c)). Examples of the exact variety include trapezoidal and algebraic decompo-

sitions [36]; grid methods include applications of A*, and quadtree decompositions

[36]. Whereas the potential field methods (Fig. 1.1(d)), unlike the other types of

planners just described, do not explicitly map preferred routes—they act instead

as heuristics to guide the search of a grid laid over the configuration space of the

robot—the original philosophy still held that the entire world model was known. In

addition, though Khatib’s original formulation of the potential field method did not

possess the property of completeness [27], further development of the theory has

produced a classical potential field algorithm which is complete [66].

As previously stated, the classical planners as a group possess the key advantages

of provable completeness and correctness. Furthermore, since the world model is

known a priori, allowing these algorithms to be computed “off-line” (that is, the

entire path can be computed before the robot ever moves, and there is no dependence

upon the robot’s sensors), in general the computational complexity of the classical

planners can be analysed. The cell decomposition methods have the additional

advantage that they produce safe corridors between obstacles, rather than hard-to-

follow one-dimensional curves. However, classical planners are often impractical to

implement, relying for example on geometric properties not able to be sensed easily

or at all by the robot as it moves, or demanding excessive computational effort.
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Even more damning (considering the “rover problem”) is the fact that classical

planners require complete knowledge of the environment beforehand, and that often

the environment must be bounded to guarantee completeness.

The class of heuristic planners, such as Brooks’ subsumption architecture [5] or

the track arbitration schemes developed at CMU [26],[78], as well as the “Go To

Waypoint” algorithm employed by the Sojourner rover [54] and the Rocky7 rover

[82] (see Table 1.1), share the useful property of being able to be made sensor-

based much more easily than the classical planners, and can be applied to unknown

terrains. These planners dispense with the idea of creating global models of the

environment in favor of “using the world as its own model” and using only local

knowledge of the environs to inform the robot’s reactions, usually chosen from a set

of “behaviours.” However, although heuristic planners are designed to work well in

“most” environment configurations, they lack completeness—there is no guarantee

that the algorithm will halt, or that the robot will be able to find the goal even if

a path exists. In addition, the heuristic planners tend to result in lengthy paths in

natural terrain (relative to the optimal path), as has been seen in field trials with

the Rocky7 rover using the “Go To Waypoint” algorithm [37]. (Most traverses of

the Sojourner rover on Mars have not been long enough to demonstrate this effect.)

It is desirable, then, to develop a path planner which combines the best of both

worlds: good local properties with a global convergence criterion. Such planners fall

under the aegis of what can be called “complete and correct” sensor-based motion

“Go To Waypoint” Behaviours:

Turn-to-Goal turn in place towards goal (unless at goal)
Obstacle Detect measure terrain in front of rover
Turn-in-Place turns away (using nominal rotation angle) from

detected obstacles
Thread-the-Needle attempts to move between obstacles to left & right;

backs up if alley is later blocked
Loop-toward-Goal based upon difference between orientation & goal

direction, arcs toward goal (choosing from three
arc radii) for nominal distance

Table 1.1: Example of a heuristic planner
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planning, the most relevant of the three categories to the problem of autonomous

planetary motion planning. These algorithms are incremental in nature: the robot

senses its environment, then determines a local path segment based upon the re-

sultant world model. After moving along the local path, the robot begins the cycle

again with its sensors. Using this model, three distinct approaches have been ex-

plored, two of which adapt classical methods to a local sensed region. One set

of methods incrementally builds “roadmaps” within the free space in the visible

area, such as Choset’s HGVG [9] and Rimon’s adaptation of Canny’s OPP [65].

Of note is the “Tangent Bug” algorithm, developed by Kamon, Rivlin, and Rimon

[23]. The second approach springs from approximate cell decomposition, filling in

a grid-based world model incrementally, such as Stentz’ D* algorithm [78], [77].

The third approach harks more closely to the heuristic planners, and includes the

“Bug” algorithms of Lumelsky and Stepanov [40], [64], which combine reactive be-

haviours with global parameters to reach the goal. All of these methods maintain

provable properties of correctness and completeness, yet are fully applicable to un-

known terrains. Both heuristic planners and these sensor-based planners share the

start

goal

visible region

robot

(a) sensor-based roadmap

start

robot

visible region

goal

(b) sensor-based grid

start

goal

robot

(c) Bug algorithm

Figure 1.2: Examples of types of “sensor-based complete & correct” planners
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Figure 1.3: Typical terrain encountered on Mars by the Sojourner rover. The in-
trepid mobile explorer is 68cm long by 48cm wide, and stands 28cm tall.

disadvantage that their computational complexity is difficult to analyse, primarily

due to the algorithms’ reliance upon sensor input for decision-making. For this same

reason, both types of planners are subject to sensor error, and it is uncertain how

such errors affect the performance of many of the methods. In particular, several

schemes rely upon “good” (or “perfect”) dead reckoning ability.

The above sensor-based methods have each been developed to differing degrees

in their application to real systems. For example, the sensor-based version of OPP is

currently strictly theoretical, owing to the difficult-to-implement nature of the sen-

sors required. The HGVG, on the other hand, has been implemented on a mobile

robot using range sensors. Choset’s planner produces paths which are maximally

distant from obstacles, a plus for rover safety. However, it works best in contained

and cluttered environments, especially those with well-defined corridors; a descrip-

tion not applicable to the typical martian environment (see Fig. 1.3), and lacks gaze

control or other means to reduce sensing effort.

Both D* and TangentBug are useful in unbounded environments, and produce

“locally optimal” solutions, that is, the paths are the shortest length possible using

solely local information). D* in particular has been implemented on a real world

system (an autonomous HMMWV driven in a slag heap near Pittsburgh). However,

the grid-based world model requires a significant amount of memory for storage,

and the algorithm’s completeness depends entirely upon the precision of its world

model, which is determined by cell granularity. D* also contains no provision for
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minimising the amount of sensing needed. The Wedgebug algorithm, an extension

of the Tangent Bug concept, is a “complete and correct” sensor-based planner which

shares the advantages of Tangent Bug while being applicable to the harsh constraints

of the rover “find-goal” problem.

We now turn our attention to prior work which has been done specifically in the

area of rover motion planning.

1.2.2 Rover Motion Planning

The literature on motion planning for rovers, or more generally for outdoor, rough

terrain (or “off-road”) mobile robots, includes work designed for and/or imple-

mented on a wide variety of vehicles, ranging from large HMMWV’s fitted with

sensors, computers, and actuators, to large prototype planetary rovers (e.g., Robby

at JPL and the Ames/CMU rover Nomad, both comparable in size to a small car),

to the small-size microrovers which have flown to Mars and are being developed for

future missions. We summarise below the properties of the Wedgebug algorithm,

the focus of this thesis, and next describe several highlights from the recent litera-

ture, and discuss aspects of the selected algorithms relevant to motion planning for

flightlike microrovers.

The Wedgebug algorithm is complete and correct, and produces locally-optimal

(shortest distance) paths through unbounded, unknown terrain. This technique also

utilises gaze control to minimise the amount of sensing, while avoiding unnecessary

robot motion. Its world model is local and simple, yielding the dual benefits of

not bookkeeping a global model (with all of its attendant registration issues), and

minimising memory requirements. A version of the algorithm has been implemented

on the Rocky7 prototype microrover.

Much of the prior work in the area of rover navigation has concentrated on

heuristic local trajectory generation, and particularly obstacle avoidance. This style

of navigation has also been referred to as “local navigation” [79] and “piloting” [43],

especially when paired with a goal-seeking behaviour. Examples include:

• Gat’s implementation of his ATLANTIS architecture (1991) [12], utilises a
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heuristic planner based on Slack’s “navigation templates” [75] for obstacle

avoidance and goal seeking, as well as a version of Barraquand and Latombe’s

non-holonomic planner [4] to recover from cul-de-sacs. The planner was imple-

mented on JPL’s Robby, a large prototype rover. This planner is claimed to

be complete, though to the author’s knowledge, no proof has been presented.

• the Autonomous Cross-Country Navigation (ACCN) algorithm of Brumitt,

Coulter, and Stentz (1992) [6], implemented on the Navlab II (a HMMWV),

which is used to follow a given global path by selecting control points within the

visible region along the path, then generating a control path and simulating

a traverse along that path. If a potential collision is detected, up to two

new control paths are generated by adding control points on either side of

the encountered obstacle. In the case that a dead-end is encountered, the

vehicle stops and the run is terminated. This algorithm was designed for fast,

continuous driving along a predetermined path in fair terrain; a situation not

applicable to the upcoming Mars microrover missions.

• Langer, Rosenblatt, and Hebert’s behaviour-based system (1994) [35], using

Ganesha to manage the local map grid and to detect untraversable cells, and

DAMN to arbitrate between votes on steering directions contributed by a set of

behaviours. For off-road navigation, these behaviours include obstacle avoid-

ance, which votes against steering arcs which pass through untraversable cells

or which constitute a “near miss” of an obstacle; and goal seeking, which uses

pure pursuit to generate a preferred turn radius. This system has also been

implemented on a HMMWV, and shares the ACCN system’s susceptibility to

dead-ends (i.e., the algorithm is not complete).

• RANGER, developed in Singh and Kelly (1995) [74] and Kelly and Stentz

(1997,8) [24], [25]. This system, implemented on both a HMMWV and CMU’s

prototype lunar rover RATLER, also arbitrates between inputs from hazard

avoidance and goal-seeking behaviours. It optimises the behaviour of following

a given goal trajectory (or pure pursuit of a goal position), while using hazard
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avoidance as a constraint. The hazard avoidance behaviour simulates traverses

along a collection of candidate local trajectories (corresponding to steering

angles) over an elevation grid, taking into account the vehicle dynamics on the

sensed terrain. Although this system is able to handle traversability issues,

clearly simulation based upon models of both the local terrain and of the

vehicle require significant computational resources, not available on the current

batch of flightlike Mars microrovers.

• Pagnot and Grandjean’s fast cross-country navigation approach (1995) [60],

which computes a (typically trapezoidal) “trace” of possible rover trajectories

(including uncertainty in sensing, motion control, and localisation) in each of

20 directions, incremented by 1◦ steps centered about the direction toward the

goal. Each trace ends when it encounters an obstacle. The planner then selects

the trace which brings the rover closest to the goal, favouring a choice which

places obstacles to the sides of the path rather than in front. This algorithm

incorporates a primitive form of gaze control: if the resulting path is too short,

the rover is directed to aim its sensors 20◦ from the current heading, to the left

or right depending on the direction of the initial (too short) path. After three

such cycles, the algorithm halts. This system has been implemented on the

IARES prototype planetary rover and tested in the GEROMS Mars/Lunar

analogue site at CNES. The algorithm is designed for mostly flat, uncluttered

terrains.

• the two versions of the Mid-Course Navigation technique developed by Nakatani

and Kubota et al. (1995-98) [70], [56], [32]. This approach, implemented on

a testbed rover using a laser range finder (which cannot see beyond impass-

able obstacles), calculates a potential field on a local elevation grid, then uses

a “tracking seeds” search method (simulating seeds, sown along the farthest

(obstacle free) grid cells from the current position, floating along the potential

flow) to generate local candidate subpaths, from which the optimal path (min-

imising the potential along the path) is chosen. These methods also include
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a form of automatic gaze control: if no forward path can be found, the rover

will sense a region to the left and right of the current visible patch.

• the Go-to-Waypoint algorithm developed at JPL (1995) [47], [82], [54] and

implemented on the Rocky3.2 and Rocky7 prototype microrovers, as well as

on the Sojourner rover now on Mars. This algorithm cycles through a list of

behaviours (see Table 1.1) in order to avoid obstacles and move toward the

goal. A particular advantage of this system is that it is tuned to the severe

computational and sensing contraints of the JPL class of microrovers.

Significantly, each of the heuristic approaches mentioned above lack the property

of completeness. That is, although these algorithms are designed to work “well

enough” within their respective domains, they are not guaranteed to reach the goal,

nor to halt in finite time if the goal is unattainable.

Besides the heuristic techniques, several graph-search methods have been ex-

plored. For example:

• the D* method developed by Stentz (1993) [77], [78]. This method (described

in Section 1.2.1) has been implemented on a HMMWV and on a prototype

rover. It has recently been extended by Yahja, et al. (1998) [89] to a framed-

quadtree version, in order to reduce the memory requirements of the world

model and to solve the inability of D* to plan some straight diagonal paths.

In addition, the D* planner has been implemented as part of a comprehensive

system on a HMMWV, combined with a local navigator, SMARTY (similar

to the Langer, Rosenblatt, and Hebert navigator described above), and the

DAMN voting arbitrator [79]. D* has been proven to be resolution-complete†

in a bounded environment [76].

• Chatila and Lacroix’ 2D navigation algorithm (1995) [8], which has been im-

plemented on the Adam prototype rover. From the sensed information, the

†That is, D* is complete, assuming the resolution of its world model grid is fine enough
to avoid masking passages between obstacles. Note that the memory requirements of a grid
increase as its resolution increases.
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planner classifies the traversability characteristics of each sensed grid cell,

which is then fused into a global bitmap model. Using this model, obstacles

are first grown, and then regions with similar traversability characteristics are

extracted. Next, nodes are defined along the regions’ borders, and a graph

search method (based upon energy, time, terrain class, and terrain labelling

confidence) selects an optimal path. As a final step, perception tasks (for

localisation and further terrain classification) are planned along this path.

• the breadth-first, parallel grid search method developed by Gennery (1998)

[13]. This algorithm uses a parallel search method derived from Witkowski

[88] on an extended elevation grid which includes information on slope and

terrain roughness at each cell. At the end of the search, the total cost of the

optimum path through each node in the local grid is known. As a result,

it is easy to adjust the resultant path in order to produce a smoother path,

for example. The algorithm also includes a notion of the probability that a

given cell is untraversable, which is integrated over the candidate path; if the

resultant probability exceeds a threshold, the path is terminated. The portion

of the path before termination is executed, and a new sensing cycle begins. (In

order to accomodate goals outside of the immediate area, the backward cost

array for the edge(s) of the grid in the direction of the goal are appropriately

initialised.)

Again, with the exception of Stentz’ D* planner, none of these approaches have

been proven complete.

A few approaches in the rover motion planning literature have not been imple-

mented to the author’s knowledge, but have been demonstrated in simulation:

• the similar extended elevation grid methods developed by Simeon and Dacre

Wright (1992) [73] and by Kubota et al. (1995,7) [33], [34]. Both of these

methods use a grid search method to select a path, based upon simulated

static placements of a given rover model on the terrain at each node. These

methods assume full prior knowledge of the terrain.
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• Shiller, Gwo, and Chen’s B-spline optimal planner (1990) [72], which models

the terrain as a B-patch, generates the best K initial paths by graph search

using kinematic constraints, then filters these paths using dynamic constraints

and proximity to another path. Finally, the remaining paths are optimised

according to time or distance. This method, as with the extended elevation

grid methods, assumes full prior knowledge of the terrain.

• A heuristic algorithm which significantly differs from those described above

is NAFBA, developed by Martin-Alvarez (1994) [43]. This approach uses

a fuzzy grid representation of the terrain, including height, roughness, and

soil physics parameters. The map also contains representations of obstacles

and of landmarks, used for localisation. A fuzzy grid search method, which

incorporates notions of traversability cost as well as of the set of allowable

“piloting behaviours” (e.g., “climb L,” “follow contour L,” “move to P”), re-

turns a program consisting of a series of desired piloting behaviours in addition

to checkpoints for localisation. This method “never generates optimal paths”

[43], but is able to handle some traversability issues, and generates linguistic

descriptions of paths. Sensing issues—e.g., how to generate the fuzzy grid,

and how to handle local vs global information—are not addressed.

In addition to not addressing sensor issues, each of these approaches has clear draw-

backs in terms of computational resources required.

Of all of these approaches, only one is tuned to the severe computational, mem-

ory, and sensing constraints of flightlike planetary microrovers: the JPL “Go-to-

Waypoint” algorithm. As discussed previously, this planner has the significant dis-

advantage that it is not complete—it is not guaranteed to reach the goal nor to halt

in finite time. Although it showed good performance for short (up to 10m) traverses

in somewhat cluttered terrain (0.57 obstacles per m2), it is not necessarily suitable

for much longer traverses or for more crowded environments [47]. Thus, it would

be of great advantage to have a complete, correct motion planner, appropriate for

a flightlike microrover, for future missions which place greater demands on rover
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autonomy.

1.3 Contributions of this Work

A key contribution of this work is the development of an autonomous sensor-based

motion planner for robots with limited field-of-view, named Wedgebug. The Wedge-

bug algorithm is complete, correct, produces locally optimal (shortest-length) paths

(considering only the visible obstacles), and utilises automatic gaze control to both

minimise the amount of sensing required and to avoid unnecessary robot motion.

This planner comprises two major modes, “motion-to-goal” and “boundary follow-

ing,” which interact to ensure that the algorithm will cause the robot to converge

to the goal (or to detect that the goal is unreachable, and thus halt) in finite time.

In addition, these major modes are split into several submodes, including “virtual”

submodes which invoke gaze control processes, in order to improve efficiency. This

thesis also contains the proof of completeness and correctness for this novel algo-

rithm. The algorithm is tuned to the severe constraints of flightlike microrovers:

the world model is streamlined, consisting of obstacle vertices, and is not retained

between subpaths, providing the benefits both of practical memory requirements

and of not requiring the planner to register local maps (thus avoiding the issue of

small uncertainties in sensing and localisation). Also, the algorithm is amenable

to varying levels of autonomy, from single-subpath execution under tight operator

guidance to complete autonomous traverse to distant goals. Besides being useful

for microrovers, the algorithm could be applied to such scenarios as environmental

hazard cleanup or military surveillance.

Another contribution of this work is the implementation of a version of Wedge-

bug, called RoverBug, on an actual prototype planetary microrover. The vehicle

in question, the Rocky7 microrover, was designed and built at the Jet Propulsion

Laboratory in order to aid in the development and testing of technologies for future

planetary rover missions. As such, the Rocky7 rover is an ideal testbed for practical

motion planners for flightlike planetary robots, as it clearly demonstrates many of
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the severe constraints faced by such planners (detailed in Chapter 2).

A third contribution is the delineation of the issues and constraints faced by

practical motion planners for flightlike planetary microrovers. Although these is-

sues are currently being factored into the development of flight systems and soft-

ware for future planetary missions, to the author’s knowledge they have not been

described in detail in any publication. Furthermore, the newness of the application

(planetary flight microrovers), coupled with its timeliness and relevancy (Mars mi-

crorover missions are planned for every launch opportunity between 2001 and 2005,

and potentially continuing into the future), renders such an exposition particularly

valuable for future research.

Finally, this work contributes a proof of a key result required for the verification

of completeness for the Wedgebug algorithm (and for the TangentBug algorithm

which inspired this approach). The original proof, provided in [21] by Kamon,

Rimon, and Rivlin, was slightly flawed, and further, was restricted to bounded

workspaces populated by a finite number of obstacles, each with a smooth boundary.

In this thesis, we not only correct the proof and remove the restriction to bounded

environments, but also extend the result to obstacles with finitely piecewise smooth

boundaries. Next, we introduce the concept of a “generalised critical point,” and

extend the original result into the domain of obstacles with finitely piecewise C1,

rectifiable boundaries.

1.4 Outline/ Conceptual Roadmap

The rest of this dissertation proceeds as follows: Chapter 2 describes in some detail

the practical application, planetary exploration, which primarily inspired this work,

and will give motivation for choices made in developing an appropriate path planner.

Chapter 3 reviews several basic concepts in motion planning, and expounds the

original TangentBug algorithm as developed by Kamon, Rivlin, and Rimon. The

chapter continues with a discussion of the advantages of this particular approach

in light of the requirements of a planetary mission, and points out where further
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development is needed. A discussion of a key result and its proof, required for the

proof of completeness for both TangentBug and Wedgebug, concludes the chapter.

Chapter 4 develops the Wedgebug algorithm and introduces the concept of using

gaze control to conserve robot motion. The chapter includes a proof of the method’s

completeness. Chapter 5 then shifts to implementation issues. The chapter begins

with a description of the Jet Propulsion Laboratory’s Rocky7 prototype Mars rover,

the platform on which an extended version of the Wedgebug algorithm described

above, called “RoverBug,” was coded and tested. Next, we discuss several issues

which arose during implementation, and discuss the changes incorporated into the

RoverBug algorithm. Finally, we include the results of tests run with Rocky7 in the

MarsYard, JPL’s outdoor rover testing facility. The thesis’ final chapter contains

concluding remarks.



18

Chapter 2

Exploration and Mars Rovers

2.1 Exploring Beyond Earth

Since even before the time of the ancient Greeks, mankind has been fascinated by the

stars, and by the velvety blackness between. As astronomy progressed, we learned

that the stars were spread over vast reaches of space, and that some of those “stars”

were actually distinct worlds, orbiting our same Sun. Scientists and writers alike

dreamed about what those worlds were like, what lessons they might hold for those

of us on Earth. In the latter part of this past century, we have gone even further:

to devise methods to actively explore those worlds.

In our quest to probe the frontiers of the space around us, we have always been

limited by the range of our senses. However, we have combated this limitation with

ingenuity, by devising means to artificially extend our sensory reach. In particular,

we have augmented the capabilities of Earth-based instruments to gather informa-

tion about the planets, with spacefaring exploratory craft equipped with remote

sensing technologies.

These planetary explorers have evolved through four basic phases of develop-

ment.∗ In each phase, the types of knowledge which could be gained from planetary
∗In the descant which follows, we will refer specifically only to the progression of the

American unmanned space program, and that only as it applies to planetary exploration.
In particular, we disregard the timeline and development of lunar exploration and of the
Soviet unmanned space program. Both of these efforts followed a slightly different path,
seeking first to impact the target body before developing (soft) landers and finally orbiters.
It should be noted that in general, the Soviets were the first to impact/land on/orbit the
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Figure 2.1: Artist’s conception of the Voyager flyby spacecraft in flight.
(courtesy JPL)

encounters have been dictated by the technologies available, which in turn drove

both spacecraft design and the instruments carried by the craft. It should be noted

that there is actually no “cut-off” time denoting the end of a particular phase: in-

deed, several types of spacecraft can be used simultaneously for a single mission.

However, new phases of development bring with them new approaches to plane-

tary exploration, enabling scientists to bring home new types of information about

distant worlds.

In the 1960’s through the mid 70’s, these exploratory spacecraft were designed

to fly by their target planets, gathering as much information as possible before

the spacecraft whizzed past, perhaps angling toward another target. This class of

spacecraft includes such examples as the Mariner missions to Mars, and the wildly

successful Voyager “Grand Tours” to the outer planets (Fig. 2.1). Fly-by missions

strive to gather “global” information: images of the planet as a whole, images

of large-scale features, traces of the magnetosphere, and atmospheric or general

moon and the nearby planets, if sometimes only by a few months. For example, the Soviet
mission Luna 9 landed on the Moon in 1966 (anticipating Surveyor 1’s success by four
months), followed by the world’s first unmanned sample return mission, by Luna 16 in
1970. 1970 also featured the first unmanned rover, carried to the Moon by Luna 17. In
contrast, although the USSR was the first to land on and orbit Mars (in 1971) and Venus
(in 1970 (surface), 1975 (orbit)), samples have not yet been returned from any planet, and
the first non-lunar unmanned rover was on the US Mars Pathfinder mission in 1997. [81]
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Figure 2.2: Photo of the Mariner 9 orbiting spacecraft.
(courtesy JPL)

planetary chemical composition, for example.

The second phase began in the early 1970’s with the development of spacecraft

designed to orbit their target planets, which “proved to be a sensible stepping stone

from flybys to a lander.”[30] The first of these was Mariner 9 (Fig. 2.2), which

entered orbit around Mars on November 14, 1971. These craft, such as the Viking

orbiters around Mars, Magellan about Venus (Fig. 2.3), Galileo around Jupiter and

today’s Mars Global Surveyor, are meant to stay in operation for extended periods

around a single planet. While in orbit, these spacecraft refine information gathered

by flybys: while the earlier spacecraft were capable of sensing only spot patches

Figure 2.3: Artist’s concep-
tion of the Magellan orbiter at
Venus. (courtesy JPL)

on the target planet as they flew past, the orbiters

allow scientists to integrate data from all over the

planet, pulling together diverse regions’ character-

istics to formulate a coherent picture. In addition,

since the orbiters fly over a given area repeatedly,

they are able to not only provide greater detail for

the area than is possible with a single pass, but

can observe detailed changes over time, a true ad-

vance over flybys. For example, the data returned

from Mariner 9 revolutionised scientists’ image of

Mars, originally formed by data from Mariners’ 5

and 6 flyby missions [30].
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Neither type of spacecraft, however, is able to return very detailed information

about the planet surface. Even today, the images received from Mars orbiters is

rarely better than 300 meters/pixel, with only isolated “postage stamp” regions

achieving the highest resolution of 1.4 m/pixel [50]. Thus, it is necessary to send a

spacecraft actually to the surface to gather detailed information about a given site.

This new era of exploration was ushered in by the Viking martian landers, in 1975

(Fig. 2.4). The Viking landers—besides imaging their environs in great detail—

could physically manipulate the neighboring rocks and soil, helping to determine

the substrate’s mechanical properties; and could gather local samples for in situ

chemical and biological analysis. Further, since the landers operated for years, they

could monitor local seasonal changes in temperature, atmospheric composition, etc.

The new information which can be provided only by surface instruments can again

challenge hypotheses formulated from flyby and orbiter data: information gleaned

from the Viking landers, for example, altered the thrust of the American martian

program from biology to geology.

Figure 2.4: Photo of the Viking lander in a Mars diorama.
(courtesy JPL)

The advent of landers allowed scientists to do “close-up” science, as they are

accustomed to doing on Earth. However, landers have a distinct shortcoming in that

they are limited to a single site for study: to sample the elemental composition of an

interesting pebble just beyond arm’s reach, for example, is frustratingly impossible
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Figure 2.5: The trenches dug in the
center of this image show the ex-
tent of the Viking lander’s arm’s
reach. The lander is unable to ex-
plore the rest of the vast area it can
see! (courtesy JPL)

without sending a second entire spacecraft (see Fig. 2.5). Nor is a lander capable

of answering the question of just what lies beyond that tantalising ridge. The Mars

Pathfinder mission in July, 1997, addressed these issues by carrying—along with a

lander fitted with an imager and atmospheric instrument suite (Fig 2.6)—the first

mobile robot to roam over the surface of another planet. The Sojourner rover (Fig.

2.7) marked the first success of the fourth phase of planetary exploration: a separate,

mobile spacecraft which was capable of traversing the planetary surface; imaging

features far from the lander—or even completely hidden from the lander’s view—

in great detail; and placing its instruments and conducting in situ experiments on

samples in a variety of terrains well outside the lander’s reach. The immediate

promise of this new advance in planetary exploration—borne out by the plans for

the next missions to Mars during the upcoming decade, as well as the 2002 nanorover

mission to an asteroid, and proposed “rover” missions to Europa and to Titan†—

Figure 2.6: The Pathfinder lander on Mars, imaged
by the Sojourner rover.

Figure 2.7: The Sojourner
rover on Mars, imaged by
the Pathfinder lander.

(both images courtesy JPL)

†The proposed missions in both of these cases may include variations on the “rover”
concept: an independently mobile submarine; or a transformable “aerover,” part rover,
part balloon.
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is that the capabilities of well-instrumented landers will become mobile, allowing

scientists to learn about a much larger area of the planetary surface in detail, and

enabling scientists to choose from a much larger collection of samples to return to

Earth than would be practical with a network of stationary landers. It is likely,

based upon experience with past phases of planetary exploration, that the results

returned from these upcoming rover missions will again bring a new understanding

of the alien worlds around us.

2.2 Spacecraft Operations: Challenges of a Planet

Beyond the problems solved in designing and building these diverse spacecraft is

the question of how to operate them once they are in space. Consider the famous

Voyager missions. As reported in the missions’ status report on November 17, 1998

(paraphrased here):

Voyager 2 is currently departing the solar system at a speed of 15.9
kilometers per second (35,000 miles per hour), and is now 8.4 billion
kilometers (5.2 billion miles) from Earth, or more than 56 times farther
from the Sun than Earth is. Round-trip light time from Earth to Voyager
2 is currently about 16 hours. Its twin, Voyager 1, is the most distant
human-made object in space, at 10.8 billion kilometers (6.7 billion miles)
from Earth, travelling at a speed of about 17.3 kilometers per second
(38,752 miles per hour).[83]

We marvel at how these—and other—spacecraft can be accurately commanded over

millions or billions of miles. However, the key for spaceborne craft navigation is

precisely that their milieu is empty, predictable, deep space.

Spacecraft meant to remain in space, such as flyby and orbiter missions, can

be commanded very precisely from millions of miles away because their deep space

environment can be accurately modelled. Most hazards are known, with known

trajectories and properties (such as gravitation) which might affect the spacecraft.

Other potentially hazardous properties of the environment, such as temperature

and radiation, are known and generally stable. Thus, not only can the spacecraft’s

trajectory and environment be plotted far enough in advance to ameliorate the

communications delay caused by the finite speed of light, but in fact the mission
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requirements can be plotted months in advance. Thus, command sequences for

these spacecraft can be generated well ahead of when they apply, and only rarely do

special circumstances arise which demand immediate attention from operators. Sim-

ilarly, the trajectories of landers can be modelled quite accurately, from their cruise

stage through space through entry, descent, and landing; the command sequences

governing these stages are also created months in advance and tested thoroughly in

simulation before use by the spacecraft.

Once on the surface, this operational model begins to break down. Landers,

confined to a single site, still enjoy some measure of predictability in their environ-

ment, particularly after any peculiar properties of the landing site are learned. The

environment is more hostile, however, than the deep space environment in many

ways. For example, on the surface of a planet, the spacecraft no longer has con-

tinual solar power.‡ A related problem—both are due to the planet’s rotation—is

thermal cycling. Components intended for surface operation must endure daily

drastic temperature swings. For example, the Pathfinder rover measured extreme

external temperatures from −85.9◦C to 19.2◦C; and extreme internal temperatures

from −36.4◦C to 48.3◦C during its 83 sols of operation in the martian summer§ [41].

In addition, surface-based spacecraft are subject to the weather patterns of their

host planet; in the case of Mars, the most severe weather hazard is dust storms,

which could potentially slash available solar power and abrade delicate instruments.

The harsh surface environment limits the expected life of a landed spacecraft. As

a result, reactive planning—rather than the deliberative planning characteristic of

spaceborne craft—becomes more important, in order to squeeze more science out of

the available time.
‡Access to solar power is important in the current political climate, which frowns upon

the use of RTGs (Radioisotope Thermoelectric Generators) in spacecraft. It is as yet unclear
how this resistance to the use of RTGs will affect future missions to the outer planets, where
solar energy will not support spacecraft operation.
§The Pathfinder mission site is in the mid-latitudes on Mars. Internal temperature was

recorded inside the WEB (Warm Electronics Box); external temperatures were measured
at the wheels and in the MAE (Material Adhesion Experiment) on the solar panel. The
temperature swing implied between day and night is real, and harsh.
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The ability to react to the environment becomes crucial when mobile rovers

are added. Besides dealing with the same hostile environment as landers, rovers

encounter their own unique hazards. Unlike the case of deep space craft, the hazards

associated with rover navigation are on a scale approaching the size of the vehicle

itself (rover hazards are measured in centimeters, rather than kilometers). The

substrate itself is variable, with properties which are unknown beforehand, which

affects (among other aspects) the rover’s ability to track its own position. Rocks

may shift under a wheel, a cleat may catch on a buried cinder and slip: all with the

result that the ultimate outcome of rover motion is, to some extent, unpredictable.

Thus, these mobile surface spacecraft require the highest level of reactiveness to

their environment in order to operate safely and to achieve their scientific goals.

2.3 Mission Constraints

There are three major constraints driving the design of surface spacecraft, and es-

pecially rovers: communications, power, and mass. Communications is clearly more

difficult for surface craft than for deep space craft, due to the hostile environment

encountered on the surface (temperature swings in particular adversely affect the

operation of frequency-controlling crystals) and since the Earth is not always within

line of sight of the spacecraft. The power available to the spacecraft is also a critical

element, since it drives everything from which motors, instruments, radio elements,

down to which CPU can be used. The rover must be able to carry its own power

sources—a combination of solar arrays and batteries. Finally, every aspect of the

spacecraft design must conform to a strict mass budget. Due to the current political

climate, the “flagship missions” of the 1970’s through early 1990’s (e.g., Voyager,

Viking, Mars Observer, Galileo, and concluding (forever?) with Cassini) are out of

favour, replaced by the “faster, better, cheaper” credo. As a result, mass is even

more stringently constrained, since mass translates directly into cost: the cost of the

launch vehicle required to send a spacecraft into space.¶ The 2003 sample return

¶The current rough cost of launching a pound into space is > $10,000 for low Earth orbit.
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rover, for example, has a mass budget of roughly 70 kg (154 lbs). A fourth con-

straint, though perhaps not as obvious, is volume, since the rover must fit inside the

surface delivery system, usually a lander with instruments in its own right, inside

the launch vehicle fairing. One consequence of these constraints is that the rover

cannot be heavily instrumented for navigation, since a higher priority is given to

preserving mass, power, and volume for the science payload. Similarly, navigation

concerns cannot choke the communication channel: the rover cannot be teleoper-

ated by any means, due both to the communications delay from sheer distance and

to communications issues including the lack of continual line of sight to Earth and

the limited availability of the Deep Space Network, used to communicate with all

planetary/deep space spacecraft. In addition, precious communication time spent

transmitting navigation data reduces the amount of science data which can be sent.

Another, overarching constraint is the project budget. Spacecraft design, in-

cluding software; fabrication, procurement (including the extremely high cost of

flight-qualified electronics)‖, and assembly; the launch vehicle; and operations must

all fit within the cost cap. Thus, although rovers require intensive supervision, the

budget precludes the proverbial “standing army” of operators, particularly for ex-

tended missions. This constraint, coupled with the issues detailed above, indicate

that a method must be found to ensure that the rover is sufficiently responsive to its

environment without requiring that the vehicle be explicitly commanded by Earth-

based operators. The goal, then, is on-board rover autonomy. Ideally, in the long

run, we will be able to send fully autonomous mobile spacecraft out across a plan-

etary surface; they would report back occasionally with interesting new discoveries

and experimental results.

‖The cost of environmentally-shielded electronics is staggering: “The price of a satellite
could potentially double [for using radiation-hardened Pentium chips].”[61] Even so, rad-
hard Pentium chips (the subject of a new DOE initiative) will not be available for four
years, too late for incorporation into the next decade of Mars rovers. Current rad-hard
CPUs are “generations behind the Pentium”[61], drilling home the need for appropriately
tailored algorithms.
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Figure 2.8: Sojourner’s farthest traverse from the Sagan Memorial Sta-
tion, accomplished on Sol 74. The rover’s radial distance from the lander
is 12.336 m. Sojourner is behind the region known as the Rock Garden;
Chimp and Snoopy are the large rocks in the foreground. (courtesy JPL)

2.4 The State of the Art

The state of the art for flight autonomy for planetary rovers is the Sojourner rover,

carried to the surface of Mars by the Mars Pathfinder (MPF) spacecraft on July 4,

1997 [42], [71]. This rover is known to have operated for a total of 83 sols (martian

days), and was healthy when the lander fell silent on September 27, 1997∗∗, thus

surviving almost three times her designed “extended mission” lifetime. Sojourner

traversed a total of 101.756 m, reaching a maximal distance of 12.336 m from the

lander (distances are measured from rover odometry). (See Figs. 2.8, 2.12.) She

returned more than 245 Mbits of data, including 193 images (57 in colour) and

APXS (Alpha Proton X-ray Spectrometer) spectra from 16 distinct targets (9 rocks

and 7 soil sites) [41]. Her mission is a resounding success, but the Sojourner rover

still represents only the first step towards the goal of autonomy. We present her

description to illustrate the design tradeoffs which will impact future flight rovers’

autonomous capabilities.

Standing 68 cm x 48 cm x 28 cm, and weighing a mere 10.5 kg, the Sojourner

rover is roughly the same size as a microwave oven. She features a 6 wheel drive,

rocker-bogie suspension, which enables the rover to surmount obstacles 1.5 wheel
∗∗September 27 marks the last day that data was received. The last communication of

any kind with the lander was on October 7, 1997. Since Sojourner must communicate with
Earth through the lander, the loss of signal ended the rover mission as well.
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(a) (b) (c) (d)

Figure 2.9: Traverse over obstacle, Sol 24 (courtesy JPL)

diameters, or nearly 20 cm, tall†† (see Fig. 2.9). (To put these numbers in per-

spective, this level of mobility is analogous to driving a car over a dining room

table.) Her top speed is roughly 0.7 cm/sec. Besides carrying several experiments,

including the aforementioned APXS, a material adhesion experiment on the solar

panel, and an abrasion experiment on one wheel, the rover sports three cameras:

two front-mounted black and white for navigation, and a rear-mounted colour sci-

ence imager. (Of course, images returned from the front cameras proved important

for science, as well, since Sojourner is able to return close-up images of features far

Figure 2.10: Close-up image re-
turned by Sojourner, showing de-
tails of rock morphology. The un-
expected pebbles and sockets sug-
gest that liquid water was present
to form these rocks, originally
thought to be purely volcanic
[62]. (courtesy JPL)

from the lander. (see Fig. 2.10) The wheels also

proved useful for soil mechanics experiments.

(see Fig. 2.11))

Sojourner’s primary source of power is her

0.22 m2 solar array, consisting of 13 strings

of 18 gallium arsenide cells, with a peak out-

put of roughly 16 W (at 17 V). Backup power,

also used for nighttime operations, is provided

by 3 strings of D-cell size lithium thionyl chlo-

ride nonrechargeable batteries. These batteries

could supply up to 150 W-hours of energy (at

8-11 V)‡‡ [41]. Sojourner’s entire power budget

††3% of the ground in the MPF site was covered by rocks >20 cm tall, on average. The
maximum concentration was 20%, in the “Rock Garden” [14],[16]. The predicted coverage
was roughly 8% [15]; for comparison, VL1 had 4% coverage, and VL2 11% [85], [86].
‡‡The batteries, used during the mission primarily for nighttime operation and for on-

demand power boosts during traverses, lasted 56 sols (thanks to careful conservation by
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Figure 2.11: The rover digging, to characterise soil mechanics.
(courtesy JPL)

for computing is 3.5 W. Due both to these severe power restrictions and to the need

for radiation-hardened, flight-proven circuitry, Sojourner is equipped with an Intel

80C85 processor operating at 2 MHz.∗

The batteries, microprocessor, and other temperature-sensitive components are

shielded from the harshest temperature swings within the Warm Electronics Box

(WEB). The WEB is approximately 33 cm x 26.5 cm x 14.2 cm† (i.e., slightly larger

than a shoebox), and features SiO2 aerogel insulation and RHUs (Radioisotope

Heating Units) as well as electrical heaters to keep the electronics within survivable

temperatures (±40◦ C). (Heating is also provided by the powered circuit boards

themselves.) Also contained within the WEB is Sojourner’s UHF radio modem,

hardwired for 9600 bps‡ asynchronous communication with the lander (and through

the lander, with Earth). As a result of the tight quarters, the rover’s circuit boards

are very densely populated and must be hand-designed to fit in their allotted space.

Besides power, these volume constraints also limit the amount of on-board memory§,

due to the large packages required for environmental shielding. Sojourner features

576 KB total volatile memory: 512 KB bulk RAM and 64 KB rad-hard storage;

and 176 KB total non-volatile: 160 KB EEPROM, 16 KB shielded PROM. Clearly,

these types of severe power and volume restrictions, as well as the high cost of

operators) before the rover switched to solar-only mode.
∗The primary drivers for choice of CPU are environmental survivability, and a tradeoff

between power draw and functionality [84].
†external dimensions
‡In comparison, current home computer modems are 56000 bps.
§The primary drivers for memory are the same as for CPU choice, plus cost (e.g., a single

shielded PROM costs $30K) and volume [84].
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Figure 2.12: Map of Sojourner’s traverse, from rover odometry, Sols 1-78 [87].
(courtesy Rick Welch)

flight-qualified electronics, will continue to constrain the computing capabilities—

and therefore the complexity of on-board autonomy—of future rovers. Of note, in

order to maximise use of her limited computational facilities, the Sojourner rover

has no on-board operating system, and her software is written in C and assembly.

It is expected that future rovers will have an on-board operating system, further

restricting available memory.

As noted earlier, communications constraints preclude teleoperation of this “mo-

bile geologist.” Instead, ground-based rover operators (on Earth) enjoyed usually

one or two communication opportunities per sol, during which the Deep Space Net-

work (DSN) transmitted command sequences for the rover (and lander) and received

buffered telemetry data. A typical rover sequence contains 200-300 commands, de-

tailing everything from thermal control parameters, to health status check rates,

to actual instrument operation and traverse instructions. These sequences are gen-

erated laboriously by the rover operators, based upon received telemetry.¶ The

¶The author had the opportunity to witness the performance of the Sojourner rover
firsthand during the first few weeks after Pathfinder landed on Mars, in her capacity as
an uplink engineer on the Rover team. (Officially, her position was Mars Pathfinder Rover
Sequence Reviewer, later Sequence Planner.) The Rover Flight Team comprised two distinct
roles: downlink and uplink. The downlink engineers’ task was to interpret data returned
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traverse commands, in particular, necessitate an intensive building process: the

designated “rover driver” dons LCD shuttered goggles in order to scrutinise stereo

imagery returned from the lander’s IMP (Imager for Mars Pathfinder) cameras.

The driver utilises a 3D graphic icon modelled on the rover to both visually localise

the rover within the lander coordinate frame, and to plan Sojourner’s movements.

In times when caution is necessary, the plan includes such detailed instructions as

“turn clockwise 17.2 degrees, then move forward 10.8 cm” to manoeuver the robot

through tight spaces. It should be noted that errors in rover sequences are danger-

ous, since—more so than with other spacecraft, whose environments are generally

more predictable—a wrong command could potentially damage the rover.

In order to ease the burden on the ground-based operators—and to test the feasi-

bility of the approach—the Sojourner rover features limited autonomous navigation

ability, encapsulated primarily in the “Go To Waypoint” command [54]. Ground

operators specify a goal location, and the rover moves toward the goal without fur-

ther instruction, avoiding obstacles and other hazards on its own. Although the two

navigation cameras have been partially calibrated for stereo, the rover relies upon

a laser-striping system to detect obstacles. The five on-board lasers project stripes

onto the ground (see Fig. 2.13), and four selected lines in the stereo cameras are

scanned to build up a 20-point range “image” of the terrain immediately in front

of the rover: the perturbation of a detected laser spot from its nominal position

within a scanline indicates the change in elevation at that coordinate, relative to

flat ground. This ephemeral terrain model, generated on-board during execution

of the “Go To Waypoint” command, is used by the rover to perform hazard detec-

tion (dropoffs, steps, and steep slopes) and reactive, behaviour-based avoidance—

to Earth by the spacecraft, assess the state of the rover, and generate constraints to be
considered in the next sol’s operations. The team had to provide an initial evaluation
of the state of the vehicle within approximately two hours of the end of the downlink
communication session. The uplink team absorbed the downlink team’s conclusions, then
met with the project scientists to determine the course of action for the next sol, and to
hash out conflicts between desired experiments and rover engineering requirements. Finally,
the uplink engineers spent the next several (8-10) hours laboriously building, documenting,
and very carefully reviewing the command sequences, using the Silicon Graphics Inventor r©-
based Rover Control Workstation (on an SGI Onyx 2).
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Figure 2.13: Image of laser stripe from front left rover camera.
(courtesy JPL)

including the ability to verify that the vehicle’s turning circle is obstacle-free, and

to “thread the needle” between rocks in close quarters—on the way to the goal. The

rover is also capable of detecting other types of hazards, such as contact (with bump

sensors mounted on the solar panel and body), tipover (with accelerometers), and

articulation (with potentiometers on key suspension link pivots). Rover odometry

keeps track of a “virtual hazard”: the rover’s proximity to the lander.‖ Operators

can command whether the rover will, upon detecting a specific type of hazard, either

abort the traverse, ignore the hazard, or avoid the hazard autonomously. Future

rovers will potentially use a combination of full passive stereo imaging, contact sen-

sors, accelerometers, potentiometers, encoders, sun sensors, turn rate sensors, and

laser “pushbroom” sensing, to aid with navigation [80].

However, even in the most relaxed cases, Sojourner required navigational super-

vision from the ground. Since Sojourner’s “Go To Waypoint” command has only

been tested for short distances, the rover driver needs to specify subgoal positions in

clear areas every few meters (the longest distance traversed by Sojourner during a

single sol was 7.769 m on Sol 32 [41]). Even more importantly, the distance travelled

by the rover each sol is limited by accumulated dead reckoning error, which is on

the order of 5-10% of the distance travelled, and caused in part by wheel slippage

(very sensitive to differences in substrate) [54]. The drift exhibited by the on-board

turn rate sensor is even worse, at approximately 13◦ per sol, forcing the usage of

wheel odometry to measure turns—a notoriously inaccurate method.∗∗ As a result,

‖This tunable parameter (3m default) defines the closest the rover may venture near the
lander, in order to avoid fouling the wheels with the lander’s deflated air bags (left over
from landing) (see Fig. 2.6).
∗∗It has been hypothesised that this drastic drift rate was due to a circuitry error, and
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the Sojourner rover is highly dependent upon the rover drivers’ ability to localise

the rover in the lander-based coordinate system at the start of each sol. Thus, the

rover is constrained to remain within 10-15 m of the lander, within the region of

good stereo resolution from the IMP cameras. Moreover, since the rover is localised

using generally a single “end-of-day” image, the results are sensitive to registration

errors in lander imagery, further limiting safe traverse distances. Problems with the

Earth-Mars and lander-rover communications links aggravate the issue: for example,

if the end-of-day image is not received for a given sol, the rover cannot be localised,

and desired traverses for the next sol must be cancelled. Unfortunately, problems

with the DSN are common. Thus, future rovers must incorporate autonomous lo-

calisation techniques to overcome these difficulties.

Other limitations to Sojourner’s autonomous navigation abilities, which

should be considered in the design of future rovers (though not all are treated in

this thesis), include the fact that the body-mounted cameras afford a low vantage

point, preventing anticipation of more distant hazards. The 20-point terrain model

is sparse, and could potentially either miss a hazardous obstacle or misclassify tra-

verseable terrain. The heuristic path planner has no guarantee that the rover will

reach the goal, nor stop if the goal is unreachable; since the goal is specified as a

coordinate in the lander-based grid, dead reckoning error affects the rover’s knowl-

edge of her target’s location. The terrain map, sparse as it is, is not retained for

future reference. The Sojourner rover’s slothful speed also contributed to naviga-

tion problems: the rover was unable to cover more than approximately 10 m per sol

(since she must traverse during hours of peak sunlight), the slow speed exacerbated

the gyro drift problem, and sometimes operators were simply unable to fit traverse

and other rover ops (e.g., imaging) in the same sol. Sojourner was also sensitive

to sensor failure: the accelerometers proved themselves unreliable, and needed to

be disabled precisely when tipover information was needed most. Finally, the lack

of extensive pre-landing testing, forced by time and budget constraints, caused the

operators to act conservatively. Many of Sojourner’s autonomous capabilities had

not intrinsic to the rate sensor itself.
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not been tested in Marslike conditions, resulting in a general lack of confidence in

the rover’s ability to avoid hazardous configurations. Thus, it is imperative that

in order to be truly useful, new autonomous motion planners must be proven on

appropriate vehicles in realistic terrain. Still, despite her limitations, the Sojourner

rover is the most autonomous spacecraft to fly to date.

2.5 The Next Decade on Mars

The successes of the Sojourner rover enthused the scientific community, and resulted

in a new plan for a series of rover missions to be sent to Mars at every favourable

launch opportunity (roughly every two years), beginning in 2001 through at least

2005.†† Although the planned mission scenario has evolved somewhat over the past

few months, many of the rover requirements have remained stable. The proposed

2003/2005 rover missions both feature a similar rover, an advance over the Sojourner

model, known informally as the Athena rover. The 2001 mission, on the other hand,

will fly a virtual duplicate of the Sojourner rover, named Marie Curie.‡‡ Although

there are conceptual plans in the pipeline for JPL rover missions to Mars in 2007

and 2009, these projects have not yet reached even a preliminary design stage.

As is par for the course for planetary missions in their earliest stages, the scope,

scenario, and even vehicle configuration for the next three Mars rover missions

have altered rapidly; at times, changing even weekly. We describe here the original

scenario for the 2001 mission, as laid out in its Announcement of Opportunity, June

30, 1997, and in subsequent discussion of the details among the rover project design

team [1],[52]. This initial mission plan was the original motivation for the work

presented in this thesis. The basic mission architecture is as follows: The rover is a

flight microrover-class vehicle, with Sojourner heritage, but roughly 1.5 times larger

(about 100 cm x 75 cm x 45 cm) and weighing less than 40 kg. After the rover is
††There is also a Mars mission for the upcoming launch opportunity in December

1998/January 1999. However, this mission was developed before the rover concept was
proven, and features a robotic arm but no mobile companion.
‡‡The Marie Curie rover is actually the refurbished flight spare of the Sojourner rover,

used during the Pathfinder mission to test controversial sequences in the “sandbox” test
environment before the sequences were sent to Mars.
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deployed, after a soft (propelled and guided) landing, it will operate on the surface

of Mars for up to one Earth year. During this time, the rover has a direct link to a

companion orbiter, through which the rover communicates with Earth. The scenario

calls for the rover to abandon the lander after exploring its environs, and traverse up

to a kilometer between each of several approximately 100 m2 regions of more detailed

exploration, in situ analysis, and sample caching (see Fig.2.16). The 2001 rover, and

a similar rover sent in 2003, will collect samples along the way and cache them on-

board. A fast, light, sample return rover to be flown in 2005 will land near one of

the two dead rovers, retrieve its cachebox, and load the box into an ascent vehicle

to return the samples to Earth. There are two communication opportunities with

the orbiter each sol, at 4am and 4pm Mars local time (MLST, for Mars Local Solar

Time). Note that these periods are outside the time when solar energy is available

(roughly 8am until 5pm MLST). In particular, the orbiter—and its link to Earth—is

not available during rover traverses, which must be executed during times of peak

solar availability, e.g., 10am to 3pm MLST. Furthermore, the rover is expected to

traverse much longer distances between communication opportunities with Earth:

up to 50-100 m during a single sol (recall that Sojourner traversed roughly 100 m

total during her entire mission), for a total traverse distance of up to 10 km for

Figure 2.14: Sketch of original 2001 mission scenario. In this mission design, the
rover leaves the unneeded lander far behind, ranging up to kilometers away. The
areas for detailed exploration and sampling are roughly 100 m2, and separated by
up to a kilometer from similarly explored regions.
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the year. Moreover, it will not be possible to anticipate (and thus pre-program)

the proper reactions of the rover to the terrains encountered during the traverse—

even if dead reckoning error rates allowed for lengthy open-loop traverses—due to

the fact that the rover is working in unknown, rough terrain. (Recall that the

resolution expected from Mars orbiters, for example, is roughly 300 meters/pixel,

with only isolated “postage stamp” regions achieving the highest resolution of 1.4

m/pixel [50]. Orbiter camera pointing limitations prohibit attempting to use these

highest-resolution images for rover navigation or localisation.) Thus, an efficient,

on-board planner is needed to ensure the rover will make acceptable progress toward

each goal, and to achieve each goal accurately, during long stretches of unsupervised

time each sol.

In the summer of 1998, the plans for the first three Mars rover missions changed

drastically. Due to various political and technical considerations, the ambitious

science payload (“Athena”) meant for the 2001 rover was shifted to 2003 and 2005.

After a period of uncertainty regarding the 2001 mission, Congress decreed that

Marie Curie, the Sojourner flight spare, would be flown. The remainder of this

section describes the detailed scenarios for the 2001, 2003, and 2005 Mars rover

missions as they stand at the time of this writing [53], [80].

All three missions will be carried to Mars on Viking-type soft landers, which in

the case of 2001, requires the rover to be deployed by the lander’s robotic arm. Also

of note, many of the experiments meant for the “Athena” rover are now situated on

the lander, including the PanCam (for Panoramic Camera) system. Once deployed,

the rover navigation will be directed by the PanCam according to the same model

used in commanding Sojourner. Further, Marie Curie will be communicating via

RF modem to the lander, as did Sojourner. However, the direct-to-Earth link en-

joyed by the Pathfinder lander will be replaced by an orbiter relay. In general, the

orbiter will make two passes per sol, likely at 2:30am and 2:30pm. The expected

downlink telemetry per sol—including all lander and rover communications—is ap-

proximately 40 Mbits. Once deployed, Marie Curie will conduct similar operations

as did Sojourner, performing soil and rock APXS analyses. However, the PanCam
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has 3 times the spatial resolution of Pathfinder’s IMP cameras, enabling Marie

Curie’s operators to extend her work space to at least 20 m from the lander. To

facilitate navigational autonomy, LBAL (Lander-Based Autonomous Localisation)

will be tested as a technology experiment. During these tests, Marie Curie will up-

date her position up to every half-vehicle length of traversed distance, and typically

every few vehicle lengths. Unfortunately, it is unlikely that operators would be able

to generate rover command sequences each sol: due to latency in the satellite relay,

sequence turnaround time could be only 6-8 hours.∗ More likely, Marie Curie will

be commanded only every other sol. Thus, a reliable autonomous motion planner

which satisfies all of Sojourner’s previously-described constraints, in tandem with

LBAL, would be of tremendous aid in increasing the useable length of time between

new command sequences.

For the 2003 and 2005 missions, the larger Athena rover will be deployed down

a ramp. The current 03/05 design calls for a wide-track rover roughly twice the size

of Sojourner, about 1.45 m x 1.2 m x 0.6 m and weighing 70 kg. Her science pay-

load will include the PanCam and a thermal emission spectrometer (Mini-TES) on

a mast; a belly-mounted core drill; and four instruments (Mössbauer spectrometer,

microimager, APXS, and Raman spectrometer) in the carousel end-effector of her

4 degree of freedom arm. There are two manipulation-support cameras mounted

Figure 2.15: Sketch of updated 2001 mission scenario. The area of detailed explo-
ration is an annulus centered around the lander, ranging from 1.5 m to at least 20 m
from the lander.
∗Satellite latency derives from the following conditions: Telemetry can only be down-

loaded from the orbiter several hours after the data is transmitted from the lander, in order
to ensure a full data set. Then, the operators must transfer the finished command sequence
to the orbiter 1 hour before its communications pass over the lander. Within the time
remaining, the operators need to interpret telemetry, receive activity sequences from the
science group, build the command sequence, and prepare the final sequence for uplink.
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on the belly, though it is not clear whether these cameras will be a stereo pair.

The rover will be powered by a solar panel, as well as by lithium ion rechargeable

batteries which can store sufficient energy for one full sol’s operations requirements.

For navigation, the rover will carry 2 body-mounted stereo camera pairs, fore and

aft, as well as the NavCam on the mast. The NavCam, with its 45◦ field of view

(FOV), covers much more ground than the PanCam’s 8◦ FOV; however, the Pan-

Cam yields much higher resolution images. She will also carry an optics-based sun

sensor, accelerometers, a turn rate sensor, suspension-pivot potentiometers, and

motor encoders. Of note is the fact that the lander will not have its own camera

system, other than its descent imagery camera; thus all navigation and localisation

must use rover imagery. Her computing environment consists of an R3000 running

at 10 MIPS, with approximately 6 MB total memory. The Athena rover’s surface

operations include drilling for core samples, and performing analyses of rock and

soil in immediate vicinity of the sample site. A primary requirement is acquiring an

appropriate diversity of samples. Thus, given the amount of time (potentially sev-

eral sols) required for a thorough analysis of a site due to the number of instruments

on board, it is strongly desired to reduce the time used by repetitive operations,

such as traversal.

The current mission architecture for 2003 is as follows: Before descending the

ramp, the rover may take a 360◦ panorama of the immediate surroundings. The

rover’s surface mission consists of three sample-collection sorties, each riskier than

the last. The first, “insurance,” sortie directs the rover to the nearest site of scientific

interest (chosen by scientists using PanCam, Mini-TES, and descent imagery†). The

rover will collect a small number of samples to return to the lander’s MAV (Mars

Ascent Vehicle). The return of samples to the MAV will be a carefully choreographed

series of steps, based upon both the basic complexity of transferring the sample

cache to the MAV as well as planetary protection requirements. In particular,

a key autonomous operation will be re-acquiring the ramp, then re-ascending to

†In the 2001 mission, Marie Curie will help provide ground truth (with her APXS)
for sites chosen via PanCam/Mini-TES, to calibrate sample site selection for the 2003/05
missions.
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reach the MAV. (While atop the lander, rails pre-align the rover with the ramp.

However, it is possible that the rover could drive off the edge of the ramp if she

is not properly aligned during ascent.) The second sortie will range further, and

gather the primary mission sample set. The final sample set is part of the extended

mission. Each of the sorties will take place within 1 km of the lander. The Athena

rover will have a three-part cachebox, where each part of the box is transferred to

the MAV upon the end of its respective sortie. Therefore, the rover will be unable

to cache further samples after the end of the third sortie, opening the possibility

for longer exploration traverses. Clearly, for any of the sorties/traverses, if the

operators choose to travel beyond the range of the currently visible area, an on-

board autonomous path planner is required. To round out the mission description,

the baseline communications design is a direct-to-Earth link via the lander, although

such a link may only be available for an hour or two per sol (including both uplink

and downlink), due to power constraints. The expected sequence turnaround time

is comparable to that for 2001. The duration of the 2003 mission is 90 sols for

the primary mission (1st and 2nd sorties), plus a 90-sol extended mission. By

comparison, this mission will last more than twice as long as Pathfinder, and by sol

83, the Pathfinder “rover drivers” were exhausted, even with 13-14 hour sequence

turnaround times. Some of this effort may be ameliorated by commanding the

rover only every other sol. Still, it is clear that an autonomous motion planner will

Figure 2.16: Sketch of updated 2003/05 mission scenarios. The rover executes three
sorties for sample collection, each riskier than the last. All three sorties remain
within 1 km of the lander. Not shown: in the 2003 mission, it is possible that the
rover will conduct additional extended-range exploration after the third sortie.
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significantly contribute to mission success.

The 2005 launch opportunity is the most difficult mission, since at that time

Mars will be very near conjunction‡. For this mission, all of the issues from 2003 are

exacerbated. The 2005 mission will be very challenging operationally: the spacecraft

will be 2.5 AU’s away (the farthest point from Earth in Mars’ orbit), which means

that the time needed for round trip communications will be greatest (approx 40

min). In addition, the available data volume per sol is drastically reduced, due to

signal deterioration with distance, and power constraints. Budgetary and political

factors induce this particular mission to be launched from Kourou, Guiana, on an

Ariane 5, based upon an agreement with the French. Due to the particulars of

the launch site, the spacecraft will arrive 82 days prior to conjunction. Therefore,

the mission will have less than three months to be completed, and to launch the

MAV, since the lander is not expected to survive the few months it will be unable

to communicate with Earth during conjunction. The mission duration may be even

more curtailed if it is decided to attempt to rendezvous the sample return spacecraft

with the orbital caches and to begin the flight back to Earth before conjunction.

If this option is chosen, the surface operations phase is constricted to roughly 30

sols. Thus, since the mission architecture is the same as for 2003, the 2005 rover

will have only about a month to execute all three sorties and return the samples to

the MAV. As a result, it is imperative that the rover be as autonomous as possible,

particularly with respect to traversal.

A key aspect of the new scenarios, compared with the Pathfinder mission, is

fewer communications opportunities, with the rover expected to accomplish more

between opportunities. Specific to the 03/05 mission architectures, the rover will

have to traverse longer distances—up to 100 m/sol, roving up to 1 km from the

lander, as opposed to Sojourner’s total of ∼102 m within 12.5 m of the lander—

without aid from Earth.
‡Conjunction occurs when the subject planet lies directly on the opposite side of the Sun

from Earth.
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2.6 The Need for Autonomy

The plan for the next decade on Mars, then, requires rovers with a significantly

higher level of autonomy than the Sojourner rover, particularly in the area of nav-

igation. The rovers will be expected to traverse much longer distances, accurately,

without supervision—up to as far in each sol as Sojourner traversed during her en-

tire mission. The limited communications opportunities, coupled with the limited

expected lifetime of surface spacecraft, impels us to enable the rover to accomplish

as much as possible autonomously in order to maximise science return. In the area

of long distance navigation, this means that the rover should be able to be given

a high-level goal, such as a coordinate in the planetary or lander-based coordinate

system, and not require detailed, intensive supervision from Earth-based “drivers”—

either human or ground-based autonomous planners—to reach the goal. Thus, the

need is clear for an autonomous, on-board path planner which satisfies the stringent

flight and mission constraints.

A practical on-board path planner must be sensor-based; that is, the planner

must not assume prior knowledge of the area. As noted earlier, orbiter data can be

expected to have a resolution of generally only about 300 meters/pixel for any given

region. It might be useful to incorporate knowledge gained from descent imagery,

but even in this case, data with sufficient resolution for navigation could only be

expected for regions very close to the landing site. Indeed, the limited scope of the

rover’s knowledge of its environs must be factored specifically into the process of path

planning. Due to the limited range of the rover’s sensors, the planner must build a

path incrementally from the rover’s current position to the goal. The approach is

rather like having a moving window centered on the robot which illuminates only the

immediate surroundings; from this limited knowledge the best choice for progressing

toward the goal is determined.

Further, the generated path should be locally optimal. That is, each segment

of the path is optimal (as measured by path length), when only the obstacles able

to be sensed by the robot along that segment are considered. As the range and

angular coverage of the robot sensors approach infinity and 360 degrees, respectively,
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the locally optimal path approaches the globally optimal solution in many cases,

particularly if the rover sensors are able to see over the surrounding rover mobility

obstacles (e.g., untraversable rocks).

In view of the terrific constraints upon computational effort, memory, and time,

the planner should also minimise the need to acquire data solely for purposes of

motion planning. That is, the planner should be able to use the available sensor

array in an efficient manner to obtain—with a minimal number of sensor queries—

the information needed to preserve the planner’s useful properties and to progress

toward the goal.

Finally, the rover should be guaranteed to reach the goal, or to be able to discover

that the goal is unreachable and therefore halt. This property, completeness, along

with local optimality, ensures that the rover acquires the goal—or recognises that the

goal is unattainable—in reasonable time. Thus, the rover demonstrates predictable

behaviour, and in the end, allows more time for science operations. A companion

property, correctness, ensures that the generated path is obstacle-free.

2.7 The Path to the Future

In response to these needs, we have developed a practical autonomous path planner,

tuned for the flight microrovers designed for the next decade of Mars missions. The

planner, “RoverBug,” is sensor-based, locally-optimal, complete and correct. It

also satisfies the hard constraints of this class of flight rovers, including minimising

memory usage, computation, and eliminating excess rover motion and sensing. This

planner significantly augments microrovers’ autonomous navigation ability, which in

turn will aid in producing successful mobile robot missions. And thus will our ability

to discover more about those alien worlds be extended, perhaps further than could

be possible even by venturing out into the solar system ourselves. For, as stated by

James Killian, Eisenhower’s science advisor, in 1961, “the really exciting discoveries

in space can be realised better by instruments than by man” [28].



43

Chapter 3

Upon the Shoulders...

3.1 Introduction

In any discussion of motion planning, and particularly during the algorithm devel-

opment which follows in Chapter 4, there are certain basic concepts which should

be reviewed in the interest of clarity. We therefore briefly address here such topics

as configuration space and freespace. In addition, in Section 3.3 we include a more

detailed discussion of the TangentBug algorithm developed by Kamon, Rivlin, and

Rimon [21], [23], since the Wedgebug algorithm presented in this thesis is inspired

chiefly by this work and bears several similarities. Finally, Section 3.4 treats a result

from topology and stratified Morse theory, used in the proofs of completeness for

both Wedgebug and TangentBug. We use this result to correct a minor flaw in the

proof presented in [21], and then extend the proof’s domain of applicability.

3.2 Concepts from Motion Planning

In his book, Robot Motion Planning [36], Latombe succinctly describes the notion

(originally developed by Lozano-Pérez [39]) of a configuration space, C. The under-

lying concept is to represent the real-world robot as a point in an appropriate space,

and to map obstacles into this same space. Then, the space contains a concise rep-

resentation of the robot’s geometrical constraints on motion, and a motion planner

needs only to consider the path of the single point which represents the robot.
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The configuration q of an object A specifies the exact position and orientation

of A relative to a fixed reference frame. Therefore, the configuration space (often

referred to as “C-space”) of A is the set of all possible configurations of A. For a

robot with n degrees of freedom (DOF), its C-space, C, is an n-dimensional space

(typically an n-dimensional manifold), since there is a one-to-one, onto map between

q and a specific arrangement of the robot’s joints and the robot’s position within

its (real world) workspace.

Obstacles are mapped into C-space by determining which configurations of the

robot produce collisions with an obstacle; these configurations are deemed forbidden.

Let A(q) denote the location of A’s particles when A is in configuration q. A C-space

obstacle (or “C-obstacle”) associated with a physical obstacle B is defined as

CB = {q ∈ C | A(q) ∩B 6= ∅}.

The complement of the C-obstacles is termed the “freespace,” F:

F = C Â ∪i CBi.

Motion plans are constructed in F. Note that the closure of freespace includes the

obstacle boundaries. Since generally a robot is allowed to touch an obstacle (but

not penetrate it), the word “freespace” (and symbol F) will often be used to refer

to the closure of freespace as well. In the case illustrated in Figure 3.1 (part (a)),

the robot is a rigid body in a 2D environment (its workspace), and it is capable

of translating in any direction (i.e., horizontally and vertically) but not rotating.

Thus, this robot has 2 DOF, and its configuration space (shown in (b)) is equivalent

to R2.

Configuration space is a useful concept for classical motion planners aimed at

creating paths for (holonomic∗) multi-DOF robots. Classical motion planning is a

∗Holonomic robots are capable of motion directly between configurations: for example,
a robot which can move forward, backward, and side-to-side freely in an obstacle-free 2D
environment. An automobile is an example of a non-holonomic vehicle; other techniques
must be used (perhaps in addition to C-space) to capture the inability of a car to move
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Figure 3.1: A sketch of the configuration space of an oblong robot with the two
polygonal obstacles shown in (a). The robot can slide in any direction, but not
rotate. The polygons in (b) are the configuration space obstacles corresponding to
the point highlighted on the robot, which would then be used by a motion planner
to plot the robot’s trajectory.

two-step process. In the first step, the C-obstacles are computed from knowledge

of the physical obstacles and of robot geometry. The second step constructs a

path within F. The resultant path can then be translated back into actual robot

configurations through an interface with the robot’s automatic controllers. As a

consequence of the power of this concept, many of the motion planners discussed in

this thesis are concerned exclusively with motion within C-space.

3.3 TangentBug

We now turn our attention to the TangentBug algorithm developed in 1995 by Ishay

Kamon, Elon Rimon, and Ehud Rivlin at the Technion in Israel. The most detailed

description of this algorithm is contained within their 1995 technical report [21]. We

present here a more compact treatment, highlighting those aspects of the algorithm

which will come into play in Chapter 4.

The thrust behind TangentBug is to find a way, using solely the robot’s on-board

sensors, to navigate though previously unknown (2D) terrain, avoiding collision with

all encountered obstacles (correctness) while ensuring that the robot will either

achieve the goal or stop if the goal is unreachable, both after traversing only a

finite distance (completeness). As discussed in Chapter 1, several algorithms—

directly sideways.
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most notably the Bug algorithms developed by Lumelsky and Stepanov in 1987

[40]—accomplish this goal. However, many of these other algorithms (including

Lumelsky’s Bug algorithms) can produce quite lengthy paths. TangentBug was

developed as a new member of the “Bug” family—an algorithm “which combines

local planning with global information that guarantees convergence” [21]—which

specifically incorporates range information to produce locally optimal paths. In

other words, TangentBug determines the shortest path possible, given the fact that

the robot has knowledge only of obstacles within range of its sensors (which may

have limited range). (It should be noted that none of this prior work has dealt with

gaze control issues for robots whose sensors have limited angular scope.)

TangentBug makes heavy use of a construct called the local tangent graph, or

LTG. First, we briefly review the global Tangent Graph (also commonly referred to

as the “reduced visibility graph” [36]). Given a 2D configuration space populated

with polygonal† obstacles about which we have full prior knowledge, and given

an initial configuration qinit and a goal qgoal, the Tangent Graph is an undirected

graph whose nodes consist of qinit, qgoal, and all of the obstacles’ convex vertices‡.

The graph edges, in turn, comprise those line segments which connect pairs of nodes

in such a way that the entire segment lies within F, and if the segment is extended

into a line, that line is tangent§ to obstacles containing the segment’s endpoints (see

Figure 3.2: The Tangent Graph.

†The Tangent Graph can also be constructed for curved 2D obstacles, as detailed in [38].
‡i.e., a vertex v of an obstacle O such that in a neighborhood N ∈ O of v, the segment

{x|x = λx1 + (1− λ)x2; 0 ≤ λ ≤ 1} ∈ O, ∀x1, x2 ∈ N.
§A line l is tangent to a C-obstacle CB at a vertex x iff in a neighborhood of x, the
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Figure 3.2). It can be proven that the shortest possible path that connects qinit to

qgoal through F must be included within the Tangent Graph [67]. So, a planner need

only search this graph to find the globally optimal path (measured by path length).

However, if the planner does not already have full prior knowledge of its en-

vironment, the robot must use its sensors to determine a clear path to the goal.

In this case, Kamon, Rimon, and Rivlin assume that the robot has an array of

sensors which can return range data within a distance R from the robot, covering

a 360◦ circular arc. The sensors are “sonar-like” in that they return the range to

the closest obstacle (within the sensor’s range limit) in a given direction, yielding

the effect that the sensors are “blocked” by obstacles and cannot “see” beyond the

closest obstacle boundary. (See Figure 3.3.) (An alternate perspective is that the

obstacles are “wall-like;” that is, obstacles block both motion and sensing.) Since

now the robot can detect obstacle boundaries only as disembodied curves (termi-

nated on both ends by discontinuities in range measurement), we model the sensed

obstacles as thin walls along those curves. As an aside, the correlation between

sensed obstacles and actual obstacles is not one-to-one, as illustrated in Fig. 3.3.

In part (b) of the figure, for example, obstacles O1 and O2 correspond to the same

physical obstacle. However, the robot’s limited sensor range, coupled with sensor

Figure 3.3: The LTG, assuming sensors with range R and omnidirectional view.
The sensed obstacles Oi are modelled as thin walls. (Note that there is not a one-
to-one correspondence between sensed- and actual-obstacles.) The LTG, with edges
radiating out from the robot’s position, connects the robot with the endpoints of
the Oi and with Tg.
interior of CB lies entirely on one side of l [36].
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occlusion, prevents the robot from recognising that the two segments are parts of

a single connected boundary. A further assumption states that the robot is never

precisely on an obstacle boundary, but instead a slight distance away, so the sensed

boundary of the “contacted” obstacle does not degenerate into a point. Instead, the

sensed boundary of a contacted obstacle is represented by a short line segment with

length 2ε, tangent to the actual obstacle’s boundary and centered at the “contact

point” (Figure 3.3(b)).

Further, Kamon, Rimon, and Rivlin assume that the robot itself is a point,

capable of movement in any direction, and that it is rotation-invariant. Then, the

range information used by the planner is precisely the information returned by the

robot’s sensors: the distance to the closest obstacle in a given direction. Our start

and target points are now positions in 2D, rather than more complex configurations;

we will call these points S and T , respectively. We retain the notion of freespace as

the set of all allowable positions.

Now we may define the local tangent graph (LTG), at a position x (Figure 3.3).

The LTG is essentially the Tangent Graph restricted to the visible region at x,

bounded by the set of sensed obstacles {Oi} and by Bx(R), the ball at x with radius

R. As such, the LTG’s nodes consist of all sensed obstacle vertices, including the

sensed obstacles’ endpoints, as well as x (as the robot’s current starting point). T

is included only if d(x, T ) ≤ R, where d(a, b) is the Euclidean distance between a

and b. Otherwise, in order to include the influence of the goal, we optionally add

a new node, Tg, at the intersection of the circle at x with radius R (∂Bx(R)) with

the line segment xT . Tg is added if and only if the portion of the line segment xT

within Bx(R) lies wholly in F, and d(x, T ) > R. Tg is essentially the projection

of the goal onto the visible region. The LTG’s edges comprise all line segments

in F between x and the sensed obstacle endpoints (and Tg, if it has been added).

Although strictly speaking, those edges in F which connect two obstacle vertices (or

an obstacle vertex with Tg) are part of the LTG, they are never used by TangentBug

for motion planning, and so will never be explicitly constructed.
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3.3.1 Overview of the TangentBug Algorithm

Like the earlier members of the “Bug” family, TangentBug features two basic motion

behaviours, “motion-to-goal” and “boundary following,” which together with the

behaviour-switching conditions guarantee convergence to the goal. During motion-

to-goal, the distance from the robot to T decreases monotonically. Boundary follow-

ing, on the other hand, attempts to escape a local minimum in the function d(·, T ).

The robot constantly senses its environment and updates the LTG accordingly; in

turn, the LTG is used by the active behaviour mode to determine the robot’s next

motion.

The algorithm begins with the motion-to-goal mode, during which the planner

searches the LTG for the locally optimal direction, which is the direction along the

shortest path to the goal according to the robot’s limited field of view (FOV). As

the robot moves, motion-to-goal continues until either the robot reaches T , or the

planner detects that motion along the locally optimal direction will trap the robot

in a local minimum of d(·, T ), caused by an obstacle between the robot and the goal.

When the latter situation arises, the robot switches to boundary following. This

mode first chooses a direction to follow the obstacle boundary in order to escape

the local minimum. During boundary following, the planner continues to update

the LTG, and monitors the graph for satisfaction of the leaving condition, which

indicates that progress toward the goal can be made along a path which brings the

robot closer to T than at any point traversed so far, and therefore the robot may

leave the obstacle boundary. The planner also checks the LTG for shortcuts which

can be taken as the robot follows the obstacle boundary. The boundary following

behaviour ends either when the leaving condition is met, in which case the robot

returns to motion-to-goal, or when the target is reached, or finally if the robot

detects a loop—that is, the robot has circumnavigated the entire obstacle. If the

robot cannot reach T nor meet the leaving condition before circumnavigating the

obstacle, T must be hidden within the obstacle and unreachable; the robot stops

and the algorithm halts. To summarise:

1. Motion-to-Goal: Move along the locally optimal direction towards T , until one
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of the following occurs:

• The target is reached. Stop.

• The planner detects that motion along the locally optimal direction will

trap the robot in a local minimum of d(·, T ). Go to step 2.

2. Boundary Following: Choose a direction for motion around the obstacle. Move

around the obstacle boundary, using the LTG to determine shortcuts, while

recording dreach, the closest distance to the goal encountered so far along the

obstacle boundary, until one of the following occurs:

• The target is reached. Stop.

• The planner detects that the leaving condition holds. Go to step 1.

• The robot detects a loop: the target is unreachable. Stop.

We describe the motion-to-goal and boundary following behaviours in more detail

below.

3.3.2 Motion-to-Goal

Recall that the basic function of the motion-to-goal procedure is to bring the robot

monotonically closer to the target. This behaviour does so by searching a subgraph

of the LTG, defined as G1 = {V ∈ LTG |d(V, T ) ≤ min(d(x, T ),dLeave)}, where x is

the robot’s current position, and the parameter dLeave stores the farthest distance

the robot may stray from T during motion-to-goal movement. Essentially, dLeave,

which is initially set at dLeave = d(S, T ) and is reset after each boundary following

step, constricts the guaranteed distance from the robot to the goal during motion-to-

goal to a series of ever-shrinking circles. The planner augments G1 by assigning to

each edge (V, T ) the length of the shortest path in F (considering only the currently

visible obstacles) between V and a new node at T , for each V ∈ G1. The algorithm

then searches the augmented G1 for the shortest path to the goal, and the robot

moves along the direction indicated by this path.
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Figure 3.4: A sample execution of TangentBug. (a) Path generated by TangentBug,
showing selected 360◦ views (with radius R) and associated LTGs along the way.
Note that near x1, the robot has detected an obstacle in its path, and must slide
around it, maintaining progress toward the goal. At x4, the algorithm switches to
boundary following, until the leaving condition is met and motion-to-goal resumes
at x5. “Direct” motion-to-goal segments are solid and dotted, “sliding” motion-to-
goal segments are dashed (x1 through x3), and boundary following segments are
dot/dash (x4 through x5). (b) The completed path. (Compare with Figure 4.14 in
Chapter 4.)

If the goal is achieved during this behaviour, the algorithm ends. Otherwise,

the motion-to-goal behaviour continues until the robot detects that it is trapped

within the basin of attraction of a local minimum in the distance to T , caused by an

obstacle blocking the robot’s progress toward the goal (the blocking obstacle). Such

a local minimum is indicated when G1 becomes empty. At this point, the planner

switches to its boundary following behaviour.

3.3.3 Boundary Following

The underlying idea of the boundary following mode is to circumnavigate the block-

ing obstacle, thus moving away from the basin of attraction of the detected local

minimum in d(·, T ), until either progress toward the goal may be resumed or the
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target is determined to be unreachable. Upon initiating a new boundary following

step, the planner chooses a direction to follow the obstacle boundary by searching

the entire LTG at x, augmented in a similar fashion as described above, to find the

shortest path to T . The robot also records dreach, the closest distance to T from

any visible point on the obstacle boundary. Unless the robot happens across the

goal, in which case the robot moves to T and the algorithm ends, the robot con-

tinues around the obstacle boundary, recording the minimum distance to the goal

encountered so far along the obstacle boundary (dreach) and updating the LTG,

until either the leaving condition is met or the robot detects that it has completed

a loop around the obstacle. The leaving condition holds when ∃V ∈ LTG such that

d(V, T ) < dreach. That is, there is a node in the LTG which lies closer to T than any

point so far encountered on the obstacle boundary, and thus the robot can leave the

obstacle boundary and resume its motion toward the goal. Indeed, at this point the

algorithm returns to its motion-to-goal behaviour, first setting dLeave = d(V, T ). If,

on the other hand, the robot completes a loop without satisfying the leaving con-

dition, then as previously discussed, T is deemed unreachable, and the algorithm

halts.

3.3.4 Proof of Convergence

We will not give a detailed proof of the completeness of TangentBug, since such a

proof can be found in [21].¶ Rather, here we present selected relevant results (the

first of which actually appears in [22], a technical report covering a 3D version of

TangentBug called 3DBug), as well as a brief overview of the completeness proof.

Some of the results which appear here will be used in the sequel.

The basic idea of the proof of completeness for TangentBug is that each motion

segment can be classified as a particular type. Each motion segment type in turn

can be shown to have finite length, and finally it is shown that there are a finite

number of each type. Thus, the algorithm halts after the robot has traversed a finite

¶We note, however, that there is an error in the proof for TangentBug using range sensors
in [21], in the proof for Lemma 4.10 in that paper. A corrected version of the proof, changed
slightly for the Wedgebug algorithm, appears in Chapter 4.
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distance. The proof is clinched when it is shown that the robot will achieve T , if

the goal is reachable from the robot’s initial position. Proposition 2.1, presented

below, is used to help classify the types of motion segments, since it shows that we

need only consider segments which point directly towards the goal or which skirt

the blocking obstacle. (The proposition will also be used in Chapter 4 to justify the

choices of where to point the limited sensing array for the Wedgebug algorithm.)

Proposition 2.1 (from [22]). Consider a planar polygonal environment, with a block-

ing obstacle between the robot location x and the target T . Then the shortest path

from x to T , considering only the visible obstacles, must pass through an

endpoint of the blocking obstacle.

Proof. The sketch of the proof is as follows: Let γ1 be the shortest path from x to T

which passes through the right endpoint of the blocking obstacle.

Figure 3.5: Illustration of
γ1, γ2.

Let γ2 be the shortest of all possible paths which

circumvent the blocking obstacle on the right,

considering only the visible (thin wall) obstacles

(see Fig. 3.5). Construct polygons Poly1, Poly2

from the edges xT and γ1 and γ2, respectively.

Then, the polygons are convex, since it is known

that shortest paths must pass through convex

obstacle vertices, and Poly1 is included in Poly2,

since it can be shown that γ2 does not cross γ1 (though the two paths may partially

overlap). Finally, it can be shown that a set of disjoint path segments yjyj+1 along

γ2, constructed from the line segments zizi+1 of γ1 in such a way that for each i and

corresponding j, ‖yjyj+1‖ ≥ ‖zizi+1‖, does not cover γ2. Thus, γ2 must be longer

than γ1. A similar argument for the left side shows that the shortest possible path

from x to T must pass through an endpoint of the blocking obstacle.

This proof can be extended to the case of non-polygonal obstacles—specifically,

obstacles with continuous, rectifiable‖ boundaries (which may still contain kinks):

‖Let x(t), a ≤ t ≤ b, be an allowable representation of an arc C with initial point
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Proposition 1. Consider a planar environment populated by obstacles with con-

tinuous, rectifiable boundaries, with a blocking obstacle between the robot location x

and the target T . Then the shortest path from x to T , considering only the visible

obstacles, must pass through an endpoint of the blocking obstacle.

Proof. The proof follows along the same lines as the proof for Prop. 2.1. Note that

the generalised “polygons” constructed from xT and γ1 or γ2 are still convex, with

Poly1 included in Poly2. Since the obstacle boundaries are rectifiable, so are the

boundaries of Poly1 and Poly2. Finally, let Z be a set of chords along γ1 such

that the sum of the lengths of the chords in Z, l(Z), equals s + ε, where s is the

arclength of γ1, and such that each straight-line subset of γ1 is in Z. Construct a

set of disjoint line segments yjyj+1 along γ2 from the line segments zizi+1 of γ1 in

the same manner as above, and note that again, this set—consisting of chords of

γ2—does not cover γ2 and that the arclength of (yj , yj+1) ≥ ‖yjyj+1‖ ≥ ‖zizi+1‖
for each i and corresponding j. If we increase the number of nodes in Z such that

ε → 0, then l(Z) → s, and ‖zizi+1‖ → the arclength of (zi, zi+1). So, we have

the arclength of (yj , yj+1) ≥ ‖zizi+1‖ → the arclength of (zi, zi+1) for each i and

corresponding j. Thus, γ2 must be longer than γ1.

After proving that the three types of motion segments: “direct” motion-to-goal

(i.e., those segments which drive the robot directly towards the goal), “sliding”

motion-to-goal (those segments which skirt a blocking obstacle while maintaining

Figure 3.6: Illustration of
a rectifiable curve.

Figure 3.7: Sketch of the set
Z associated with γ1.

x(a) = A and terminal point x(b) = B. Denote by l(Z) the sum of the lengths of a set Z
of chords whose endpoints are the points {tν}n0 , t0 = a, tn = b (see Fig. 3.7). As n → ∞
such that σ(Z) = max(tν − tν−1) → 0, if l(Z) → s < ∞, then C is rectifiable and s is the
arclength of C [31].



55

monotonic progress toward the goal), and boundary following segments each have

finite length (using the reasonable assumption that obstacles have boundaries with

finite length), it is shown that an entire motion-to-goal segment (consisting perhaps

of several “direct” and “sliding” components) has finite length. Further, it is shown

that the distance to the goal between successive local minima (along the robot path)

is strictly decreasing∗∗. Theorem 1 from [21] shows that the algorithm halts after

finite path length. The theorem (along with Theorem 2, presented later) makes

heavy use of the fact that there are a finite number of local minima of d(·, T ) which

could be encountered by the robot. This statement requires a somewhat involved

proof (as well as some restrictions on the environment), which will be given in

Section 3.4.††

Theorem 1 (from [21]). The algorithm terminates after a finite path.

Proof. TangentBug switches from its motion-to-goal behaviour to boundary follow-

ing only at a local minimum in d(·, T ). Further, it was shown that the distance to

T between successive minima decreases, so the algorithm can switch to boundary

following only once in each minimum. By Lemma 4.1 (see Section 3.4), there are

a finite number of local minima of d(·, T ) within F. As a consequence, there are

a finite number of motion segments. Since each segment has been shown to have

finite length, the entire path has finite length.

Finally, Theorem 2 from [21] demonstrates that TangentBug is complete.

Theorem 2 (from [21]). If the target T is reachable from the starting point S then

the robot will reach it in a finite path.

Proof. It can be shown that if T is reachable from S, then every boundary following

segment will terminate at a point where the leaving condition is satisfied, after

finite path length. Therefore, since motion-to-goal switches to boundary following
∗∗A proof for the similar result for Wedgebug is given in Chapter 4.
††The proof of this statement given in [21] was somewhat informal, and invokes the

property that “any set of isolated points in a compact space...is finite,” which is not strictly
true. The treatment in Sect. 3.4 discusses and corrects this error, clarifies assumptions, and
then extends the result to more general environments.
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at a local minimum in the distance to T , and this switch can happen only once per

minimum, it remains to be shown that there is a last motion-to-goal segment, which

ends at T (assuming a generic environment). Motion-to-goal segments terminate

either at a local minimum, or at the target. There are a finite number of local

minima (Lemma 4.1), say N . Thus, if after visiting N − 1 local minima the robot

has still not reached T , the robot must encounter the N th minimum. The boundary

following segment thus begun must end with the leaving condition satisfied, since T

is reachable. So, the robot begins the N + 1th motion-to-goal segment. Since there

are no more minima to terminate the segment, it must end at T .

3.3.5 Trouble from Mars

The TangentBug algorithm we just described is a promising starting point for devel-

oping a motion planner for use by rovers on Mars. The algorithm is able to use local

information gathered by the robot’s sensors, augmented by just enough knowledge

of the robot’s position to track the target and to detect when the robot has executed

a loop, to guarantee a locally optimal path to the goal (assuming T is reachable).

At the same time, since the algorithm does not (necessarily) build a global model

of its environment, and since it models obstacles as thin curves sensed by the robot,

it does not require excessive memory to construct or store information about its

environs.

However, TangentBug still has shortcomings when applied to the “rover prob-

lem” of navigation on Mars within the constraints discussed in Chapter 2, since

some of its assumptions do not apply to this domain. Besides the clear examples—

TangentBug assumes that the rover is a point robot capable of omnidirectional

motion, for example, and it relies upon ideal dead reckoning for the global informa-

tion it does require—there are many perhaps less obvious issues. A few examples

follow: TangentBug assumes a continuously updated, 360◦ view of the environment.

Not only is continual sensing a potential drain on available memory and compu-

tational capacity (since the sensed information must be processed to segment out

obstacles), but the current designs for flight-like planetary rovers do not include
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omnidirectional panoramic cameras‡‡ (or other omnidirectional sensors). Thus, the

available sensing array would need to be repositioned (or “panned”) many times

to acquire the full view, costing memory, computational effort, and time. Hence,

any practical algorithm must attempt to minimise the amount of sensing via an

automatic form of gaze control. Another issue is the fact that TangentBug assumes

that the visible region is star-shaped, bounded by the sensed obstacles (or by the

sensor range where there are no obstacles), whereas on Mars it is likely that the

rover will be able to “see over” many of the obstacles it encounters. In addition,

although the locally optimal nature of the resulting paths is certainly desirable, the

planner does not include a notion of maximising safety while skirting around an

obstacle. Finally, the planner does not include a mechanism for handling terrain

roughness, nor for coping with alternate possibilities for goal designation (rather

than as a simple coordinate point; some alternatives include driving with a certain

heading, until a given distance or time limit, or angling toward a particular terrain

feature).

Many of these issues are addressed in the following chapters. In particular, the

problem of sensing with a limited field of view is specifically pursued in Chapter

4, and leads to the development of the Wedgebug algorithm. Several of the other

areas are incorporated into the “RoverBug” implementation (a variant of Wedgebug

tuned for an actual flightlike prototype rover) described in Chapter 5. A few of these

issues are still open research areas, such as a practical method to incorporate terrain

roughness in a more satisfying manner than is described in Chapter 5, or to utilise

alternate goal designations. A discussion of the remaining open issues appears in

Chapter 6.

‡‡Several groups, both at NASA and in private industry, have been developing such
cameras, which use conical-section mirrors to image 360◦ at once, for use on rover-like
vehicles. However, currently none have been flight-qualified, and it is extremely unlikely
that such a camera would be added to the 2005 rover.
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3.4 The Lynchpin

The proof of completeness for TangentBug (and later Wedgebug) hinges on the

statement that there are a finite number of local minima∗ of d(·, T ) which could

be encountered by the robot executing the algorithm. This statement was given as

Lemma 4.1 in [21] by Kamon, Rimon, and Rivlin.† The proof sketch provided in

[21] assumes that the C-space is bounded. From this fact, it is stated, it follows

that there are a finite number of obstacles, and that their boundaries have finite

length. The crux of the proof relies on the fact that “any set of isolated points in

a compact space...is finite” [21]. Next, Kamon, Rimon, and Rivlin state that the

critical points of d(·, T ) lie on the obstacle boundaries, which are assumed to be

smooth, and note that d(·, T ) restricted to a boundary is smooth. Recalling the

definition of a Morse function as a smooth function, all of whose critical points are

isolated, and that almost every smooth function on a smooth manifold is Morse,

they conclude that there are finitely many critical points of d(·, T ) on almost any

obstacle boundary. Finally, they characterise the boundaries on which d(·, T ) is not

Morse—those which have T at the center of curvature at a critical point—and thus

add the assumption that the environment must be generic, to avoid this situation.

However, the key statement in their informal proof, that “any set of isolated

points in a compact set is finite,” does not strictly apply in this situation. In addi-

tion, the lemma’s assumptions are not clearly delineated, and the result is restricted

to generic, bounded environments populated by (a finite number of) obstacles with

smooth boundaries. Here we present a corrected, more detailed proof. Next, we

extend the results first to obstacles with piecewise smooth boundaries, then to ob-

stacles with piecewise C1 boundaries in a not necessarily generic environment. (In

all cases, we assume that the boundaries are continuous and rectifiable.) We assume

that the reader has basic knowledge of real analysis, differential geometry, and of

topology; good references for these topics are [69], [68], [29] (for real analysis), [31]

∗or rather basins of attraction, as will be shown later
†Specifically, Kamon, Rimon, and Rivlin state that there are a finite number of local

minima in the (assumed bounded) free configuration space.
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(for differential geometry) , [18] and [19] (for topology).

A brief “roadmap” of the remainder of this section follows: After establishing

the basic properties of the relevant space, we prove the proposition that all of the

local minima of d(·, T ) encountered by the robot lie within a closed disc centred

at T with radius d(S, T ). Thus, we eliminate the necessity of assuming that the

environment is bounded. Next, we establish the fact that a set of isolated critical

points of a C1 function on a compact set is finite; thus, we need only show that

the critical points of d(·, T ) are isolated on the C-space (and that the gradient is

continuous) to prove the result. Noting that the critical points must lie on the

obstacle boundaries, we invoke stratified Morse theory to complete the proof. Next,

we extend the result to piecewise smooth boundaries (with a finite number of pieces)

by treating each piece as a distinct compact smooth manifold. Finally, we define the

notion of a “generalised critical point,” and prove an extended lemma for the case

of obstacles with piecewise C1 boundaries (again, with a finite number of pieces) in

a not necessarily generic arrangement, replacing “local minima” with the concept

of “basins of attraction.” To finish the section, we demonstrate that Tangent Bug

is complete, replacing Lemma 4.1 from [21] with our extended result.

3.4.1 Proof of Initial Result

First, we discuss the nature of the relevant C-space, and of F, the set of interest.

We note that here (since we are concerned only with translations and not rotations

in robot motion), C-space is a metric space; that is, it is a pair (X, ρ) of a set X

and a metric ρ, such that ρ satisfies the standard properties of a distance function.

In our case, C-space is embedded in R2, inheriting the standard Euclidean metric.

Indeed, C-space is a 2-manifold, locally topologically equivalent‡ to R2.

We also note that the relevant portion of C-space (i.e., the portion of C-space

containing local minima where the algorithm may switch modes) is closed and

‡More correctly, an n-manifold X is locally diffeomorphic to Rn, which means that every
point x ∈ X has a neighborhood which is diffeomorphic to an open set U ∈ Rn. Two sets
X and Y are diffeomorphic iff ∃ a smooth (C∞, or having continuous partial derivatives
of all orders) map with a smooth inverse) map f such that f : X → Y is bijective and
f−1 : Y → X is smooth [18].
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bounded. This assumption is made explicitly in [21]. However, it is not neces-

sary, since the parameter dLeave ensures that we need not consider local minima

outside of the closed disc, or cell, with radius d(S, T ) centred at T , BT (d(S, T )):

Proposition 2. All relevant local minima are contained within BT (d(S, T )).

Proof. By Corollary 4.12 from [21], the distance to T decreases between succes-

sive local minima/switching points from Tangent Bug’s motion-to-goal mode to

its boundary-following mode.§ Hence we need only show that the first local min-

imum m1 lies within BT (d(S, T )), since all subsequent minima will lie closer to

the goal. The robot detects m1 from the point S1, which terminates the first

motion-to-goal segment. Let dreach denote the closest distance to T measured

along the blocking obstacle boundary (which contains m1). Clearly, since the

distance to T decreases monotonically along a motion-to-goal segment, we have

d(m1, T ) ≤ dreach < d(S1, T ) ≤ d(S, T ).

Thus, by the Bolzano-Weierstrass Theorem [19], the relevant portion of C-space

is compact. (To simplify our terminology, we will refer to “the relevant portion of

C-space” as D.¶) Two important well-known properties of compactness are

1. Every open cover of a compact space K has a finite subcover [19],[29],[68].

2. Every infinite set X in K has at least one cluster point in K, that is, there is

a point x ∈ K such that for each open set O containing x, O contains a point

in X distinct from x (the Bolzano-Weierstrass property) [29],[68].

The relevant portion of freespace (again, to simplify terminology we will refer

to this region as F), a closed subset of D, inherits the properties of being a com-

pact metric space from D. F is also a 2-manifold with boundary. However, F is

not topologically equivalent to a cell, but rather is D −
⋃
i int(Oi), where the set

{Oi} is the set of obstacles intersecting BT (d(S, T )), and for each i, int(Oi) is the

largest open set contained in Oi (in other words, if ∂Oi is the boundary of Oi, then

§Lemma 6 in Chapter 4 yields an analagous result for the Wedgebug algorithm.
¶D is used in [19] to denote a cell.
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Figure 3.8: A sketch of F =
D −

⋃
i int(Oi).

int(Oi) = Oi − ∂Oi). (See Figure 3.8.) We as-

sume that the set {Oi} is finite, i.e., that there

are a finite number of obstacles in D. Further, we

assume that ∂Oi has finite arclength for every i

(i.e., it is rectifiable—see Sect. 3.3), and that the

boundary is smooth.‖

Consider the function fq : F → R such that

fq(p) = d(p, q), where q is a point in R2 and

d(x, y) is the Euclidean metric on R2.∗∗ Let V

be the vector field −−−→grad(fq)††; that is, at every point p ∈ F, let

V (p) =
(
− ∂fq
∂x1

(p),−∂fq
∂x2

(p)
)
.

It can be shown that the zeroes of V are precisely the critical points of fq (i.e., those

points where d(fq)p = 0). Further, x is an isolated‡‡ zero of V iff it is an isolated

‖We will later extend our result to continuous boundaries that are not necessarily smooth.
∗∗fT is known as the distance function with pole q [55].
††The use of the negative gradient echoes the robot’s motion to decrease its distance from

the goal.
‡‡A set of isolated points E ∈ X has the property that for each c ∈ E,∃ an open set

Oc containing c such that Oc ∩ E = {c} [68].
Note that this is a different use of the term isolated than in the statement (which we

will denote by 4) that “any set of isolated points in a compact space is finite” [21]. The
definition of this second sense is as follows: A point x is isolated iff the set {x} is open [29].
The following is a proof of 4, by Jake Matijevic [44]: Given a compact set K, then for each
isolated point x ∈ K, let Nx be the open set {x}. Then, the set of all Nx can be expanded
to be an open cover of K. Since K is compact, every open cover has a finite subcover.
Therefore, there must be a finite number of Nx, and thus a finite number of isolated points
in K.

However, this second definition does not apply to the situation of critical points (which
are isolated iff V maps a neighborhood of each critical point homeomorphically onto a
neighborhood of 0 in R2 [19]; this definition is equivalent to the first definition above).
Moreover, the first definition of isolated is not sufficient for the statement 4, as shown
by the following counterexample: Consider the closed interval K = [0, 1] ∈ R. Since this
interval is a closed, bounded subset of a Euclidean metric space, it is compact. Consider
the sequence E = { 1

2 ,
1
4 ,

1
8 ,

1
16 , ...}. Clearly, this infinite subset has the limit point 0 (zero),

which is in K but not in E. Now we will construct an open set Oc ∈ K for each c ∈ E such
that Oc ∩ E = {c}. Let Oc be the open interval (c − c

2 , c + c
2 ). Thus, we have constructed

an infinite set of points in K, all of which are isolated (in the first sense). Clearly, then, the
use of the statement 4 by Kamon, Rimon, and Rivlin in their proof of Lemma 4.1 in [21]
is incorrect.
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Figure 3.9: A sketch of the vector field V associated with fT in the F from Figure
3.8. Note that V has no zeroes except at T .

critical point of fq [18].

We can use V to show that if all of the critical points of fq (in a compact set

K where V is continuous on K) are isolated, then there must be a finite number of

them.∗ Suppose not, and let K contain an infinite number of critical points of fq.

Then by compactness, K must contain a cluster point p of the set of critical points.

By the continuity of V , we must have V (p) = 0; thus, p is a nonisolated critical

point of fq, a contradiction.

Consequentially, we need only show in our case, where q = T , that the critical

points of fT are isolated (or that fT is non-degenerate (ND)†, since fT ND implies

that all of its critical points are isolated [55]) on a compact manifold where V

is continuous, to prove that there are a finite number of critical points of fT—

and therefore local minima of fT—on that manifold. Unfortunately, although V is

continuous on F, it does not have any zeroes at all except at the global minimum,

T (if T ∈ F) (see Figure 3.9). This approach will not find the local minima (or

maxima) of d(·, T ), which are points on the manifold boundary where the vector

field V is normal to the boundary.

Note: A continuous function f : X → Y is a homeomorphism iff f is bijective on X and
f−1 is continuous [68]. [18] defines isolated critical points in terms of diffeomorphisms, but
we need only that V is continuous for our purposes.
∗This proof is originally from [19].
†A critical point a of a function f is non-degenerate (ND) iff the Jacobian of f at a is

nonvanishing; a function f is ND iff each of its critical points are ND [55].
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However, we may consider F as a collection of distinct manifolds, where each

obstacle boundary (and the boundary of BT (d(S, T ))) is considered as a separate

1-dimensional manifold. (If ∂Oi does not lie entirely within BT (d(S, T )), then the

intersection points ∂Oi∩∂BT (d(S, T )) form separate 0-dimensional manifolds.) This

collection of manifolds, along with the open 2-manifold int(F), is called a stratifica-

tion of F, and each distinct manifold is called a stratum. We redefine a vector field

V ∗ on this stratification as follows: for each p ∈ F,

V ∗(p) = −−−→grad(fT |M ) =
(
− ∂fq
∂x1

(p),−∂fq
∂x2

(p)
)∣∣∣
Tp(M)

where M is the stratum containing p. In other words, the vector field restricted to

each 1-dimensional stratum is now the gradient of fT projected onto the tangent to

the obstacle boundary (see Fig. 3.10). It is clear that zeroes of V ∗ will occur at T

(the global minimum of d(·, T ), if T ∈ F) and at points on the obstacle boundaries

where −−−→grad(fq) is normal to ∂Oi. Zeroes of V ∗ also occur along ∂BT (d(S, T ))

and at the points ∂Oi ∩ ∂BT (d(S, T )), since the latter points have 0-dimensional

tangent spaces. We may disregard all zeroes on ∂BT (d(S, T )), since these (non-

isolated zero) points do not represent local minima of d(·, T ). (Most of these points

represent local maxima; the obstacle boundary intersection zeroes are artifacts which

cannot represent relevant local minima—points mi which dictate that the planner

may switch between motion-to-goal and boundary-following behaviours—because

Prop. 2 ensures that d(mi, T ) < d(S, T ).) We may also disregard T , if T /∈ ∂Oi for

all i, since it is the goal where the algorithm terminates.

Thus, we restrict our search for critical points (which may correspond to rele-

vant local minima) along the (finite number of) 1-dimensional manifolds ∂Oi. (We

include the entire obstacle boundaries, rather than restricting ourselves to the cell

BT (d(S, T )), since if the number of local minima on an obstacle boundary is finite,

then the number of local minima on the part of the boundary within BT (d(S, T )) is

also finite.) Since each obstacle boundary is topologically equivalent to S1 (a closed,

bounded subset of a cell), it is compact [19].
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Figure 3.10: A sketch of the vector field V ∗ associated with fT and the stratification
of F given in the text. Note that V ∗ has zeroes at T and where V is normal to the
obstacle boundary.

Since the obstacle boundaries are smooth, we have a situation applicable for

the machinery of stratified Morse theory (described in detail in [17]). We will not

discuss this theory in detail, but rather note that in this case, it can be shown that

fT is a Morse function on ∂Oi, given a generic environment‡ [55], [51]. One nice

property of Morse functions is that their critical points are non-degenerate§, and

therefore isolated [18], [55]. Since Morse functions are smooth, it follows that V ∗ is

continuous on ∂Oi, and therefore there are a finite number of critical points—and

hence local minima—on ∂Oi.

Finally, we have proven:

Lemma 4.1 (from [21]). There are a finite number of isolated local minimum points

of d(x, T ) over the free configuration space (F).

This result—that there are a finite number of (relevant) local minima for a

generic planar environment containing a finite number of obstacles with smooth

(and rectifiable) boundaries—is the same result presented as Lemma 4.1 in [21],

with the exceptions that the assumption in [21] that the environment is bounded

‡i.e., T is not a focal point for any Oi, where a focal point of a manifold M is defined
as follows: If the vector p − q is normal to M , and p is a degenerate critical point of the
mapping p→ ‖p− q‖ : M → R, then q is a focal point of M with base point p [55]. In other
words, the environment is considered not generic if any part of an obstacle contains an arc
whose center of curvature is T .
§The definition of a Morse function is a smooth function whose critical points are all

non-degenerate [51], [18].
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has been replaced here by Prop. 2, the remainder of the assumptions of the proof

of Lemma 4.1 in [21] have been clarified, and the statement that any isolated set of

points in a compact space is finite, as used by the original proof in [21], has been

corrected.

However, we do not wish to restrict ourselves to obstacles with smooth bound-

aries.

3.4.2 Extension to Piecewise Smooth Boundaries

Figure 3.11: An obsta-
cle with piecewise smooth
boundaries

We relax the assumption that the obstacle boundaries

are smooth by allowing the obstacles to have piecewise

smooth boundaries, with a finite number of vertices.¶

We can consider such an obstacle Oi to be made up

of several distinct smooth curves Cj , joined at a fi-

nite number of vertices xj (see Fig. 3.11). Treating

each open curve C̃j as a distinct 1-dimensional man-

ifold (and each vertex xj as a distinct 0-dimensional

manifold) we would like to invoke stratified Morse theory again. Unfortunately, C̃j

is not compact, so we cannot use our result that a set of isolated critical points on

a compact set is finite.

Therefore, we will consider each closed curve Cj as a distinct entity embedded

in R2. Then, by showing that the number of critical points of fT |Cj is finite, we

will show that the total number of critical points of fT |∂Oi is finite. Again, for Cj

generic, fT |Cj is Morse [55], [51]; therefore all critical points of fT |Cj are isolated.

Since Cj is compact, there are a finite number of critical points. Then, since there

are a finite number of curves (and vertices, which we count as automatic critical

points), there must again be a finite number of local minima. So, we have:

¶It is stated in [21], but not proven, that the result in Lemma 4.1 can be extended to
obstacles with piecewise smooth boundaries.
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# critical pts of fT |∂Oi ≤
∑
j

(# critical pts of fT |Cj ) + # vertices of ∂Oi

=
∑
j

(# critical pts of fT |Cj + 1)

<∞,

and therefore,

# relevant local minima of fT ≤
∑
i

(
# critical points of fT |∂Oi)

<∞.

3.4.3 Extension to Piecewise C1 Boundaries & Non-Generic Envi-

ronments

Next, we wish to extend our result to non-generic obstacles, with continuous, piece-

wise C1, rectifiable boundaries with a finite number of vertices. Using the same

philosophy of decomposition described above, an obstacle boundary ∂Oi consists of

a finite number of C1 curves Cj joined by a finite number of vertices xj . We consider

each closed curve Cj as a separate entity embedded in R2, defined by Cj(t) : I → R2,

where Cj(0) = xj , Cj(1) = xj+1. For simplicity in the subsequent discussion, we

will denote fT |Cj simply as fT , and “critical point” refers to a point in Cj which is

a critical point of fT |Cj . We include the endpoints of Cj as critical points in our

analysis.

For each nonisolated critical point y ∈ Cj of fT , define the (closed) set Ay as the

largest path-connected set of critical points containing y. We will denote this set,

the “arc Ay,” since it composes a circular arc with T at its center of curvature. We

will restrict the set of curves we will consider to those which satisfy the constraint:

@Ay such that Ay = {y}.

That is, there are no nonisolated critical points which do not belong to a path-

connected component containing other critical points. This condition prohibits
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Figure 3.12: Illustration of the definition of y−. Note that the choice of z for
y−1 in the diagram violates the conditions, since ∃ξ such that fT (ξ) > fT (x) and
fT (ξ − ε) ≤ fT (ξ). Also note that ξ, x2, and x3 are contained within arcs.

excessive “wiggliness” in the curve, as exhibited by the “topologists’ comb”-like

function, x3 sin 1
x , near zero. Let us define a generalised critical point (g.c.p.) Z as

either an isolated critical point or as an arc Ay (by definition, then, every critical

point of fT is contained within some g.c.p.). Further, we define the “corner points”

{c} of Z as the set of (at most two) points in Z where either fT (c + ε) < fT (c)

and/or fT (c − ε) < fT (c), for any ε small. Let the index of Z, idxZ, be the num-

ber of “corners” in Z; if Z consists of an isolated critical point c, idxZ = 2 if

fT (c+ ε) < fT (c) and fT (c− ε) < fT (c), for any ε small. If idxZ = 0, we say that

Z is a local minimum of fT . If idxZ = 2, Z is a local maximum; else, Z is a saddle.

We will call ZÂ{c} a reduced g.c.p.

Now, for each critical point x (isolated or nonisolated), let Ix be the closed inter-

val containing x and bounded by y− = Cj(t−) and y+ = Cj(t+), defined as follows:

Let t− be the smallest value such that fT (y−) ≥ fT (x) and

fT (y− − ε) ≤ fT (y−) for any ε small, and @ξ ∈ (y−, x) such that fT (ξ) > fT (x)

and fT (ξ − ε) ≤ fT (ξ) for any ε small (see Fig. 3.12). (Note that if such a ξ exists,

it is a critical point of fT .) Define y+ similarly: Let t+ be the largest value such

that fT (y+) ≥ fT (x) and fT (y+ + ε) ≤ fT (y+) for any ε small, and @ξ ∈ (x, y+)

such that fT (ξ) > fT (x) and fT (ξ + ε) ≤ fT (ξ) for any ε small.

Next, define the open interval Bx as follows: Let Ix = [a, b]. Then, Bx = (a, b);

i.e., Bx is the largest open set contained in Ix. If x ∈ Z is a local minimum of

fT , then Z ⊆ Bx; otherwise, ZÂ{c} ⊆ Bx, where {c} is the set of (at most two)



68

“corner points” in Z. With some abuse of language, we call the interval Bx the

basin of attraction of x for fT [20]. Intuitively, if we were to let a particle follow the

(negative) gradient of fT |Cj , starting at any point in Bx, the particle would end at

x (or on an arc Ax containing x such that fT (y) = fT (x) ∀y ∈ Ax). Note that each

Bx contains at most one reduced g.c.p. ZÂ{c}, and since Bx is defined for each

critical point x, every ZÂ{c} ∈ Bx for some x.

Due to the definition of Bx, the only points ν such that ν /∈
⋃
Bx are the “corner

points.” Let ν /∈ any Bx. If −−→grad(fT (ν)|Cj ) = 0, then ν ∈ Z for some generalised

critical point Z. Since ν /∈
⋃
Bx, ν must be a corner point. If −−→grad(fT (ν)|Cj ) 6= 0,

then ν ∈ (x−, x+), where x− ∈ Z−, x+ ∈ Z+ are the closest critical points on either

side of ν (recall that the endpoints of the curve are critical points). By necessity,

either idxZ− > idxZ+, or idxZ+ > idxZ−. Assume without loss of generality that

Z− is a local maximum. Then, x− = Cj(t−) is a “corner point” (and x+ is not).

Since ν ∈ (x−, x+), and t− is the smallest value such that fT (x−) ≥ fT (x+) with

fT (x− − ε) ≤ fT (x−) for any ε small, and @ξ ∈ (y−, x) such that fT (ξ) > fT (x+)

and fT (ξ− ε) ≤ fT (ξ) for any ε small (since no critical point intervenes between x−

and x+), then ν ∈ Bx+ , a contradiction.

The set of Bx for all critical points x ∈ Cj can be expanded to form an open

cover of Cj . For each point ν = Cj(tν) such that ν /∈
⋃
Bx, it follows from the

discussion above that ν is a “corner point” for some g.c.p. Z. Construct an open

set Oν = (a, b) around ν as follows:

• If fT (ν + ε) < fT (ν), for any ε small, then ∃ a critical point x = Cj(tx),

tx > tν , such that fT (x) < fT (ν). Let x be the closest such critical point. By

the continuity of fT , ∃z ∈ (ν, x) such that fT (ν) > fT (z) > fT (x) (and note

that z ∈ Bx). Let b = z.

• If fT (ν + ε) = fT (ν)), then ν ∈ Ax = [ν, x], for some x. By the Axiom of

Choice, we can choose some z ∈ Ax such that a neighborhood of z lies within

Ax. Again, z ∈ Bx, and let b = z.

• If fT (ν + ε) > fT (ν)), for any ε small, then ∃ a critical point x = Cj(tx),
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tx > tν , such that fT (x) > fT (ν). Let x be the closest such critical point. By

the continuity of fT , ∃z ∈ (ν, x) such that fT (ν) < fT (z) < fT (x) (and note

that z ∈ Bν). Let b = z. (This case occurs if ν is an isolated saddle point.)

• Define a similarly, using fT (ν − ε).

Therefore, each Oν contains a single “corner point,” and {Bx} ∪ {Oν} is an open

cover of Cj .

By the compactness of Cj , for every open cover, there exists a finite subcover.

Therefore, there must be a finite number of basins of attraction of fT on Cj , which

implies that there are a finite number of reduced g.c.p.’s, ZÂ{c}. Furthermore,

there are a finite number of “corner points.” Choose one point zkj from the reduced

g.c.p. of each of these basins of attraction. Let us now redefine Bzkj as Bzkj ∪Zzkj ,
where zkj ∈ g.c.p. Zzkj , therefore assigning each “corner point” ν to the unique

basin containing ZÂ{c} where ν ∈ Z. (This assignment causes Bx to be the true

basin of attraction, in the dynamical sense, for the g.c.p. containing x.) Then, there

are a finite number of Bx, {Bzkj}
Nij
1 , (which are clearly disjoint).

Now, the total number of basins of attraction of fT on ∂Oi, Ni, is bounded by

the sum of the number of basins of attraction of fT on each Cj , Nij , plus the number

of vertices (similar to our count of critical points above), which in turn is finite.

The concept of basins of attraction on ∂Oi can be extended to F. In this case,

we again consider the stratification of F discussed above, and define x̄(t) as the

solution to the equation of motion of a particle acting under the influence of a (non-

continuous) force where M is the stratum containing x̄(t) at t. Define B̃x as the set

of points y such that if x̄(0) = y, then as t → ∞, x̄(t) → z ∈ g.c.p. Zx containing

x. Zx is termed the ω-limit set of B̃x, and points y such that F (y) = 0 are called

equilibrium points [20]. (Note that this definition automatically casts vertices of

∂Oi as equilibrium points; for a vertex xj , we define its basin of attraction B̃xj

as the union of the basins of attraction of xj considered as a point in Cj and in

C(j−1) mod k.) Clearly, Bx ⊂ B̃x, and {B̃zkj} is disjoint for all zkj ∈ Cj . (Note,

{B̃zk}N i
1 =

⋃j
1{B̃zkj}

N ij

1 covers ∂Oi.) Thus,
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# relevant basins of fT in F ≤
∑
i

(# B̃zk on ∂Oi) =
∑
i

Ni

≤
∑
i

(∑
j

(# Bzkj on Cj) + # vertices of ∂Oi
)

=
∑
i

∑
j

(Nij + 1)

<∞,

Thus, we have proven:

Lemma 1. There are a finite number of relevant basins of attraction of d(·, T )

over the free configuration space (F), for a finite number of obstacles each having a

rectifiable, (finite) piecewise C1 boundary.

Note that we have not been able to prove in the non-generic case that there are a

finite number of local minima, but rather of basins of attraction. Still, this result is

enough to show that the Tangent Bug (or Wedgebug) algorithm may switch modes

at a finite number of points.

Proposition 3. Tangent Bug switches from motion-to-goal mode to boundary-following

mode when the robot detects that it is in a basin of attraction of fT on some obstacle

boundary ∂Oi. Further, the algorithm will switch modes at most once for a given

basin of attraction.

Proof. The first statement is merely a restatement of the manner in which Tangent

Bug uses range sensors to determine when to switch modes. The second statement

is a consequence of the fact that the distance to T decreases between successive

(generalised)‖ local minima of fT which trigger mode switches along the path, and

that the distance to T is constant for all points in the ω-limit set of a given basin.

Thus, we have completed the proof that Tangent Bug is complete and correct,

and have provided a key result for our proof of the completeness and correctness of

Wedgebug in Chapter 4.

‖i.e., a point zk chosen from the ω-limit set
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Chapter 4

Wedgebug

4.1 Introduction

Useful motion planners for planetary rovers have several key characteristics: they

must assume no prior knowledge of the environment, must be sensor-based, robust,

complete and correct. They must also operate under severe constraints of power,

computational capacity, and the high cost of flight components, which translates

into limited memory available on-board the rover. Due to dead reckoning errors,

slippage on rough/loose substrate, nonholonomic fine-positioning constraints, and

constraints on mission time available, using rover motion to augment sensing is

costly. Simultaneously, limited memory, computational capacity, power and time

available all argue for minimising the amount of data that must be sensed and pro-

cessed. Thus, a practical motion planner must utilise the available sensing array in

a scheme which efficiently senses only the data needed for motion planning, requires

minimal memory to store salient features of the environment, and conserves rover

motion.

In the previous chapter, we reviewed TangentBug, an incremental, sensor-based

path planner. TangentBug provides the motivation for the work presented here. As

discussed in Chapter 3, its world model is streamlined, consisting only of sensed

obstacle boundary endpoints. The algorithm is memory-efficient, fairly robust, and

conserves robot motion. It is also complete, an essential property of useful plan-

ners for autonomous robots. However, some of its assumptions do not apply to
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the “rover problem” of navigating in planetary terrain. For example, TangentBug

assumes that the robot is modelled as a point, and that obstacles block both motion

and sensing. In addition, TangentBug assumes that the robot’s sensor provides an

omnidirectional view, and does not attempt to minimise the amount of sensed data

used for planning.

The current scenario for a rover sensing system consists of a stereo pair of cam-

eras mounted on a pan-able mast. Typically, these cameras have a 30◦ to 45◦ field

of view (FOV), and the “visible region” associated with these sensors sweeps out

roughly a wedge, with limited downrange radius R due to both viewing angle (tilt)

and feature resolving ability. (See Fig. 4.1 for an example of data from such a

sensing array.) Camera pixels which image features closer to the horizon (hence

farther away) have a larger footprint than pixels that image the foreground; simul-

taneously, obstacles further away are apparently smaller in relative size. These two

properties combine to limit the range at which a stereo pair can resolve obstacles

Figure 4.1: Rangemap of a single image from a stereo pair. This image also shows
results from the implementation of the “RoverBug” algorithm on Rocky7, tested
in the JPL MarsYard (see Chapter 5). Within the wedge are detected obstacles
(light grey pixels), delineated by their convex hulls (small white polygons). The
“silhouettes” of the convex hulls–essentially the configuration-space obstacles, since
the rover is not a point robot–have been generated, represented by the large light
grey polygons. A path generated by RoverBug from the rover’s current position on
the left to a goal near the center of the wedge winds between the forbidden regions.
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of a given height, for instance. (Recall that obstacle height is a key parameter for

rover navigation.)

Since sensing is limited in both range and angular coverage, we must develop an

algorithm which balances the cost of redirecting the sensing array versus the cost

of moving the robot, while maintaining completeness and correctness. From the

discussion above, it is clear that it is important to not simply pan the sensor array

and obtain multiple images that can be synthesised into an omnidirectional view

at every step. Rather, the planner should be able to identify the minimal number

of sensor scans needed—and which specific areas to scan—to proceed at each step,

while avoiding unnecessary rover motion. In the development which follows, it is

assumed that the cost of redirecting the sensor array is less than the cost of moving

the robot. This assumption is borne out by experience with microrovers in planetary

terrain, particularly those whose primary sensors used for higher-level navigation

are mounted on a platform capable of being panned independently from the vehicle.

Dead reckoning errors, compounded by slippage during motion among rocks and

loose substrate, render motion costly. Motion is expensive (compared to sensing)

from an energy viewpoint as well, particularly when the sensors used are passive,

such as the stereo system used for currently planned Mars rovers. Simultaneously,

the limited memory, computational capacity, power, and time available on-board a

flight rover for motion planning all argue for minimising the number of views taken.

The resulting planner, a step towards a more practical path planner for planetary

microrovers, is the “Wedgebug” algorithm. Wedgebug is complete, correct, and

relies solely upon the robot’s sensors. Perhaps most importantly, Wedgebug deals

with the limited FOV of flight rovers in a manner which is efficient and minimises

the need to sense and store data, using autonomous gaze control.

4.2 The Wedgebug Algorithm

A more practical sensing system model for rovers (than TangentBug’s omnidirec-

tional view) can be formalised as follows: The rover’s sensing array, from position
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x, detects ranges within a wedge W (x,~v) of radius R, which sweeps out an angle

2α (> 0) and is centered on the direction ~v. (All vectors are assumed to have unit

length, unless otherwise specified.) Define C as the arc boundary of W (x,~v) at

radius R, and ∂W (x,~v) as the union of the two bounding rays of W (x,~v) (Fig. 4.2).

We further define the “interior” of W (x,~v) as int(W (x,~v)) = W (x,~v) − ∂W (x,~v)

(N.B., an “interior” point may lie on C). Besides the assumptions already dis-

R

W
α

 robot
sensor

vi
→

i

C
∂Wi

Figure 4.2: Anatomy of a sensor “wedge.”

cussed, Wedgebug uses a number of other basic assumptions, as follows: The rover

is modelled as a point robot in a 2D environment, and it is assumed to be ca-

pable of omnidirectional movement. In addition, the environment is binary–that

is, every point in the robot’s space is either contained within an impassable for-

bidden region (an “obstacle”) or lies in freespace, F. The obstacles, in turn, are

“wall-like”: they block sensing as well as motion (just like walls in an indoor,

α

R

goal

robot

v0
→

Figure 4.3: The rover’s wedge
view in relation to its configura-
tion space. The shaded regions
are obstacles.

office-type environment). It can be noted here

that these assumptions match those of the Tan-

gentBug algorithm, thus isolating the effect of

the limited sensor FOV. (Ways to address the

non-point volume of the rover, and its more re-

alistic ability to see over many obstacles, are ad-

dressed in Chapter 5.) Finally, let d(a, b) be the

Euclidean distance between points a and b.

The Wedgebug algorithm operates using two

modes, or “behaviours”: motion-to-goal (ab-

breviated MtG ), and boundary following (ab-
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breviated BF ), which interact to ensure global convergence to the goal. Each mode

is further divided into components which improve efficiency and handle the limited

FOV.∗ The key to the algorithm is the fact that the shortest possible path (as-

suming only the portions of obstacles within radius R of the robot) passes directly

around the blocking obstacle, the first obstacle encountered between the robot and

the goal (see Chapter 3). Therefore, the Wedgebug algorithm strives to establish

the extent of the blocking obstacle (or, rather, enough of the obstacle boundary to

choose a preferred direction of traversal around the blocking obstacle) with a mini-

mal number of sensor queries, then move to the appropriate sensed endpoint of the

obstacle’s boundary, thus conserving robot motion. A high-level sketch of the op-

eration of the Wedgebug algorithm follows: At the beginning of the path sequence,

an initialisation step records the parameter dLeave = d(S, T ), where S is the robot’s

initial position, and T is the goal. dLeave, set here (and later reset during boundary

following), marks the furthest distance away from T that the robot can venture

during an MtG segment, and is the global parameter which ensures convergence to

the goal.

MtG is typically the dominant behaviour. It basically directs the robot to move

towards the goal using a local version of the tangent graph, restricted to the visible

region (Fig. 4.4). The tangent graph† consists of all line segments in freespace

connecting the initial position, the goal, and all obstacle vertices, such that the

segments are tangent to any obstacles they encounter [36]. Define the local tangent

graph, LTG(U), as follows:

Definition 1. Let LTG(U) be the local tangent graph within the set U , defined as

the tangent graph restricted to U .

In our case, sensed obstacles appear as continuous countours in the range data,

and are differentiated by discontinuities in range measurement (such discontinuities
∗It should be noted that due to the tradeoff choices made here, it is possible that a

similar robot using TangentBug and omnidirectional sensors could produce a shorter final
path. However, Wedgebug will produce the shortest possible (local) path using only the
regions sensed, and retains the property of completeness. Section 4.6 discusses several
methods to improve optimality of the global path, at the cost of increased sensing.
†also known as the “reduced visibility graph”
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Figure 4.4: The LTG, computed
within W0. The wedge is the
same as that shown in Fig. 4.3.
The dot/dash lines show the
edges of the LTG; the small cir-
cles on the obstacle boundary are
the two nodes. Note that in this
case, since W is directed towards
the goal, G1 = LTG. robot

obstacle

goal

LTG nodes

LTGF

v
→

0

indicate that the ray from the robot in that direction is tangent to an obstacle). An

obstacle is further modelled as a thin wall comprising solely its sensed boundary;

the endpoints of these “walls” are called the “obstacle vertices.” Each endpoint e

corresponds to a discontinuity in the range data or to an intersection of a contour

with ∂W or C. Note that under the given assumptions (2D environment, with

“wall-like” obstacles), LTG(U) consists of all edges between the rover’s position x

and sensed obstacle boundary endpoints. (LTG(U) also contains edges which are

coincidentally tangent between obstacle endpoints, but these edges are never used

by Wedgebug, and so are never explicitly constructed.)

MtG works roughly as follows: The robot (at position x) first senses a wedge,

W0 = W (x,~v0), where ~v0 = −→xT/‖−→xT‖ is the vector from x to the goal (Figs 4.2,

4.3). (All wedges in the subsequent discussion are assumed to subtend a half-angle

α.) The planner constructs LTG(W0) (Fig 4.4). If there are no visible obstacles in-

tersecting the segment of the ray −→xT lying within the wedge (or the ray is tangent to

any obstacles encountered), the planner adds a node Tg to LTG(W0) at a distance R

from x along −→xT , so LTG(W0) contains a path directly towards T . The planner then

searches a subgraph, G1(W0) = {V ∈ LTG(W0)
∣∣ d(V, T ) ≤ min(d(x, T ),dLeave)},

for the optimal local subpath. Note that G1 essentially contains those nodes in the

LTG which lie closer to the goal than the current position. Also, the “optimality”

of a path is measured by shortest length–that is, the optimal sub-path will be the

shortest local path, restricted to W0, which brings the robot closest to the goal.

Using the criterion discussed in Section 4.3 below, the rover may scan additional

wedges as needed, and constructs the LTG in the conglomerate wedge, W (x), which
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Figure 4.5: Rough sketch of possible BF
path. The path skirts the boundary of
the “blocking” obstacle (the visible ob-
stacle between the robot and the goal)
until the leaving condition is satisfied
(i.e., when W0 contains a node of G1
which lies closer to the goal than any
point so far encountered on the obsta-
cle boundary). (Note: this figure does
not illustrate “virtual boundary follow-
ing,” which is discussed in Sect. 4.4.)

goal

robot

local minimum

 Rough sketch of 
possible BF  path

leaving condition
     satisfied

   gaze
direction

is the union of all of the wedges sensed while the robot is at position x.

After executing the resulting subpath, MtG begins anew. This behaviour is

continued until either the goal is reached, T is deemed unreachable, or the robot

encounters a local minimum in d(x, T ), which corresponds to a non-convex blocking

obstacle which spans the visible region (Fig. 4.6). In the latter case, the planner

switches to BF . The objective of this mode is to skirt the boundary of the blocking

obstacle (the obstacle whose boundary contains the local minimum), still calculating

LTG(W0), until one of two events occur: either the robot completes a loop, in which

case the goal is unreachable and the algorithm halts; or LTG(W0) contains a new

subpath toward the goal (the leaving condition), which triggers a switch back to

MtG (Fig 4.5). Of note, no information, other than explicitly recorded points and

parameters, are passed between steps.

A (very) high-level depiction of the Wedgebug algorithm in pseudocode follows:

The robot is initially located at S, with goal T .

1. Initialisation Global variables:

Set dLeave = d(S, T ).

Set Ob = ∅, Vloop = ∅, and ρ+ = “none.” (see Sect. 4.3).

Set done = False. /∗ Goal has not been achieved ∗/
2. Call MtG (S, T, ∅).

Boolean function MtG (xinit, T,W )
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Figure 4.6: Example of inescapable
local minimum. Note that the tan-
gents to the obstacle boundary at
the edges of W (x, ~v0) slope away
from the goal (~tF · −→FT < 0). α

R

goal

robot

    tangents 
at edges of W

local minimum
0

Boolean function BF (xinit, T,W, ρ+, Vloop, k)

Note that the MtG and BF functions return a Boolean value which indicates whether

the goal has been achieved. The MtG function is also passed essentially a flag which

indicates whether the wedge directed toward the goal from xinit has already been

sensed (by the prior BF function). If the wedge has been sensed, W is set equal to the

wedge; otherwise, W = ∅. Additionally, the BF function is passed a third argument,

W , the conglomerate wedge assembled by the immediately preceeding MtG function

call. By using the already assembled conglomerate wedge, BF is spared the necessity

of re-sensing an area. Its fourth argument, ρ+, records the positive direction of

traversal around the blocking obstacle, if there is one; otherwise, it is set to “none.”

The fifth argument, Vloop, marks the point on the current blocking obstacle (if there

is one) which, if reached, indicates that the robot has executed a loop. (If the robot

was not in “sliding” mode prior to the switch to BF (see Section 4.3), Vloop = ∅.)
Finally, the index k indicates the direction of the last wedge sensed during the prior

MtG step. The next two sections describe the MtG and BF modes in more detail,

including those aspects which are aimed at efficiency.

4.3 Motion-to-Goal

As described above, the basic idea of MtG is to move toward the goal through

freespace, F, using the shortest possible visible path—in other words, the robot

assumes that it is only allowed to traverse the area it is currently sensing in its

quest to get as close as possible to the goal—in such a manner that its distance to
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T is nonincreasing. During this type of behaviour, there are two situations: either

the robot can move directly through freespace toward the goal (“direct mode”), or

it must skirt the boundary of a blocking obstacle while still decreasing its distance

from T (“sliding mode”). Further, “sliding mode” contains another submode, “vir-

tual MtG ,” in order to improve efficiency. That is, during normal MtG , the planner

scans a single wedge view toward the goal to determine whether a path exists. If it is

apparent that more information could lead to a shortcut around an obstacle bound-

ary, “virtual MtG” scans additional wedges in order to determine the appropriate

shortcut, and therefore improve efficiency.

The first actions taken in a new MtG segment, after checking to see whether the

robot is already at the goal (in which case the algorithm halts and returns True),

is to scan a wedge directed toward the goal, W0 = W (x,~v0).‡ (In the sequel, we use

W (x) to denote the current composite view, which may consist of a single wedge

or multiple wedges.) Next, the planner computes LTG(W0). If the segment of the

line←→xT (connecting the current point with the goal) from x to the intersection with

C (the arc boundary of W0) lies within F, and d(x, T ) > R, add node Tg at this

intersection (←→xT ∩C) to LTG(W0). Tg is the projection of the goal onto the visible

wedge. (If d(x, T ) ≤ R and no obstacle properly intersects xT , set Tg = T .) Note

that Tg does not serve as a goal itself, but rather ensures that a direct path in W0

exists in the case that there are no visible obstacles between x and T .

Using LTG(W0), the planner finds the subgraphG1 = {V ∈ LTG(W0)
∣∣ d(V, T ) ≤

min(d(x, T ),dLeave)}. Nodes in G1 lie closer to the goal than the current position,

and are closer than the initialisation parameter dLeave. The latter condition ensures

that each MtG segment is contained within a bounded region, BT (dLeave), the circle

(or “ball”) centered at T with radius dLeave. As dLeave is reset (nonincreasingly) by

BF segments (Section 4.4), the tightening constraint on succeeding MtG segments

to remain inside BT (dLeave) ensures global convergence to the goal (Section 4.5). If

G1 6= ∅, then next the planner searches G1∪T to find the shortest-distance path to

the goal. If P is the resultant path, then let PR be the subpath (contained wholly

‡If this wedge has already been scanned by a prior BF step, that range data is re-used.



80

within W0) comprising the path segments solely between nodes of G1. We know

(from Chapter 3) that P will pass through either Tg (if Tg ∈ G1) or an endpoint e of

a blocking obstacle (which intersects the ray −→xT within W0); call the point through

which the shortest path passes the focus point, F (Fig 4.4). The focus point (fixed

for each step) serves as the goal for each MtG step. Since the subpath for the current

MtG step is precisely xF (see Proposition 4), F simply marks the direction for the

robot to travel during this step to minimise its distance to the goal. The position of

F within the robot’s FOV also determines whether additional wedge views should

be taken to improve efficiency.

Proposition 4. PR consists solely of the segment xF .

Proof. By construction, P is the shortest length path from x to T in G1 ∪ T . If

Tg ∈ G1, clearly the shortest possible path is xT , which passes through F = Tg,

QED.

If, on the other hand, Tg /∈ G1, we know from Proposition 2.1 from [22] (Chapter

3) that the shortest possible path from x to T must skirt the boundary of the blocking

obstacle, the obstacle sensed in the direction ~v0. Thus, P must pass through a

sensed endpoint of the blocking obstacle; call this point F . Assume without loss of

generality that there is one other point in G1 through which P passes, call it Y .

Clearly, we must have PR = xF + FY .§

Figure 4.7: Sketch for proof
of Proposition 4.

Since Y is sensed, xY ∈ F. Invoking the triangle

inequality, we must find that either xY is shorter than

PR, or F is collinear with x and Y . In the first case, we

have a contradiction, since we know that the shortest

path must pass through F . So, we must have x, F , and

Y collinear. Let Path1 be the shortest path from F to

T along the (“back of the”) sensed blocking obstacle

boundary (see Figure 4.7), and let Path2 be FY+ the

§If PR = xY + Y F , then since xF ∈ F (because F is sensed), and since by the triangle
inequality d(x, F ) ≤ d(x, Y ) + d(Y, F ), we have either found a shorter path to the goal—via
xF—in G1 ∪ T , a contradiction, or Y is collinear with x and F and can be removed from
PR.
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remainder of P (i.e., P − xY ). Now, using a similar argument to that used in the

proof of Proposition 2.1 (Chapter 3), it can be shown that the polygon bounded by

FT and Path1 is included within the polygon bounded by FT and Path2. Finally,

continuing the similar argument, it can be shown that Path1 is shorter than Path2.

But this result means that xF + length(Path1) ≤ xF + length(Path2) = P , a con-

tradiction.

Then, simply put, PR = xF . The role of F is discussed in more detail below. If

G1 = ∅, the planner switches immediately to BF .

If F = Tg, the robot simply executes the subpath to F , and starts the next MtG

step. We call this case a direct MtG segment, since the robot proceeds through

freespace directly towards the goal.

Otherwise, the robot has encountered a blocking obstacle, O, which it must skirt

in order to continue towards the goal, in which case MtG enters “sliding mode.”

To ensure that the robot does not backtrack, the planner establishes a traversal

direction around the obstacle (i.e., clockwise or counter-clockwise)—call it positive

(ρ+)—upon first sensing O. This direction, positive (ρ+), is determined at the end

of the MtG step in which the blocking obstacle is first sensed, by the final choice of

subpath goal: if F is the subpath goal, then ∠(−→xT ,−→xF ) > 0 (that is, the direction

of rotation from ~v0 to −→xF is defined as positive).¶ Thereafter, the robot must

satisfy the sliding condition: it must traverse in the positive direction around O,

and may not change direction while following a single (sensed) obstacle’s boundary.

In subsequent MtG steps, after determining the shortest path in G1∪T , F is chosen

as follows: If F /∈ ∂O, or if F is the sensed endpoint of ∂O in the positive direction

(e+), F is unchanged. Otherwise, F is changed to e+. At the start of “sliding

mode,” the planner also records Vloop, the sensed endpoint of ∂O in the negative

direction (e−). This point is used to detect whether the robot has executed a loop

around O during “sliding mode,” in which case T is unreachable and the planner

halts (and returns False); it is also useful in the case of a switch to BF during

¶Note that F will not lie on xT , since then F = Tg and we will not be in “sliding” mode.
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“sliding.” “Sliding mode” ends when

1. the blocking obstacle is changed (including the case when F = Tg),

2. the planner switches to BF , or

3. the robot detects that it has circumnavigated O.‖

Below, we delineate the actions of “sliding mode,” as determined by the position of

F within the visible region:

Case 1: If F ∈ int(W (x,~v0)), there are two cases to consider: either the ray
−→
xF is tangent to the blocking obstacle O, or another obstacle is partially obscuring

the blocking obstacle’s boundary (i.e., ∃ a node in G1, V , which is collinear∗∗ with

x and F and d(x, V ) < d(x, F )). In the first case, after recording ρ+ and Vloop, the

robot simply executes the subpath to F , and starts the next MtG step. This is the

case illustrated in Fig. 4.4. (N.B., for purposes of the proof to be given later, the

robot never lies directly on an obstacle boundary ∂O, but rather remains a distance

ε away.) In the second case, it is possible that the second obstacle is hiding an

inescapable local minimum. We will return to this case later.

Case 2: If, on the other hand, F ∈ ∂W (x,~v0); that is, the shortest path around

the blocking obstacle, O, intersects the border of the visible region, the planner must

inspect the tangent to ∂O at F , ~tF ,†† to see whether the robot will likely be “sliding

around” the blocking obstacle while maintaining progress toward the goal, or if it

has possibly encountered an inescapable local minimum in d(·, T ). If ~tF · −→FT < 0,

the robot would need to increase its distance from the goal to skirt the obstacle on

the subsequent step. So, if allowed, the planner changes F to the opposite sensed

endpoint of ∂O, and tests the new F ′ (see Fig. 4.8). Changing F is not allowed

if (1) F has already been changed once at x, or (2) the change would violate the

sliding condition, the established direction of traversal around an obstacle during

‖Case (3) occurs only in the non-generic case when the goal is in the center of a circle
or a pathologically positioned/sized regular polygon.
∗∗Collinearity is not necessarily subject to noisy measurement in this case, since both

obstacle boundary endpoints result from the same discontinuity in range measurement.
††For Wedgebug, tangents always point out away from the visible region.



83

Figure 4.8: Example of escapable lo-
cal minimum. Note that at F, the
tangent slopes away from the goal
(~tF · −→FT < 0), but not at F′. It
would be beneficial to change F in
this case to F′. α

R

goal

robot

    tangents 
at edges of W local minimum0

F

F′

MtG . If on the second time around, F ′ ∈ ∂W (x,~v0) and ~tF ′ ·
−−→
F ′T < 0 (or F cannot

be changed), the robot has encountered an inescapable local minimum in d(·, T )

(Fig. 4.6). Thus, the planner switches to BF (described in Sect. 4.4).

In the case that F ∈ ∂W (x,−→xT ), but ~tF ·−→FT ≥ 0, the robot must “slide around”

the obstacle while progressing toward T . Unfortunately, being close to an obstacle

restricts the robot’s already-limited view and can result in tiny incremental steps.

Thus, in order to efficiently acquire data from the robot’s current position and to

avoid as much inefficient motion as possible, we add a submode of MtG , called

“virtual MtG .” The object of “virtual MtG” is to sense (from the current position)

additional wedges in the direction the robot will “slide around” the obstacle, and

to generate a local shortcut in the robot path. In this manner, the robot uses

additional sensing to minimise unnecessary motion.

“Virtual MtG” mode directs the sensing array to pan towards F (defining this

direction of rotation positive, if not already so defined), and to sense the wedge

W1 = W (x,~v1), where ∠(−→xT ,~vk) = 2kα, k ∈ Z (that is, W1 abuts W0 at F ) (Figure

4.9). Let W = W0∪W1 (in general, at each position x, W (x) =
⋃
sensedWi(x)). The

planner computes G1(W ), and finds the new focus point F (using the temporary

definition of the positive sense of rotation). Let ∂W+ be the bounding ray ~r such

that ∠(−→xT ,~r) > 0 (i.e., the edge of W in the positive direction). If F ∈ ∂W
+,

“virtual MtG” is repeated. This mode ends if one of three conditions is met:

1. F ∈ int(W ), in which case the robot has found a suitable shortcut. The robot

records ρ+ and Vloop (unless already recorded for this obstacle), executes the
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Figure 4.9: Virtual MtG . The diagram on the left shows the start of a typical MtG
step. The small circles depict the nodes of G1; the focus point F is indicated with
an arrow. Since F lies on the side edge of W0, “virtual MtG” is invoked. The robot
senses a second wedge, W1, which abuts W0 in the direction of motion around the
obstacle (chosen by the selection of F ). Since F now lies in the interior of W1 ∪W0,
“virtual MtG” stops and the robot will execute the subpath to F .

subpath to F , and begins another MtG iteration.

2. ∠(xT , ∂W+) ≥ π/2, which means that the rover is sensing part of a region

not useful for MtG , since G1 contains only nodes closer to T than the robot’s

current position.

3. ~tF ·−→FT < 0, which indicates that the obstacle boundary is curving back toward

x, that is, the robot can no longer “virtually slide” in this direction without

losing ground.

In fact, case (2) implies case (3). In these cases, if allowed, the robot changes F

as discussed above, and attempts “virtual MtG” again. If the second attempt fails,

the robot has encountered a local minimum in d(·, T ), and the planner switches to

BF .

We now return to the case where F ∈ int(W (x,~v0)), but the blocking obstacle

boundary is partially obscured by another obstacle. As noted, the obscuring obstacle

may be hiding an inescapable local minimum. Thus, as in the case when F ∈
∂W (x,−→xT ), we check the tangent to ∂O at F . If ~tF · −→FT ≥ 0, “virtual MtG” can’t

help, so the planner records ρ+ and Vloop, executes the subpath, and begins another

MtG iteration. If ~tF · −→FT < 0, we change F (if allowed), and check the new F ′.

If on the second time around, F ′ ∈ ∂W (x,~v0) or the boundary at F ′ is similarly
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obscured, and ~tF ′ ·
−−→
F ′T < 0 (or F cannot be changed), the robot has encountered

an inescapable local minimum and the planner switches to BF .

Below, we detail the pseudocode version of the the MtG behaviour. Recall

that we have the global variables dLeave, Ob, Vloop, ρ
+, and done, explained (and

set with their initial values) in Section 4.2. The structure of the MtG function is

a loop, executed until done 6= False. The loop can also be broken in one of two

alternate ways: either the algorithm explicitly breaks the loop and halts (in the case

that the robot has circumnavigated an obstacle), or it exits the loop to switch to

the BF behaviour. Note that upon a call to BF , the loop exits—in particular, once

the BF function has ended, control does not return to the middle of the MtG loop.

Thus, the structure of the entire program could be thought of as a switch statement

(at the start of each step, execute either an MtG step or a BF step based upon the

current behaviour mode), but not as a series of nested loops.

The pseudocode function below utilises several subfunctions, change F,

record slide, slide, and reset slide. Each of these functions are expanded into their

pseudocode representations after the main function, accompanied by a brief de-

scription. In addition, MtG uses the primitive function coll(a, b, c), which returns a

Boolean indicating whether the points a, b, and c are collinear.

Motion-to-Goal: Boolean MtG (x, T,W )

While (done = False) {
1m. Set flag(F changed) = False. Set k = 0. /∗ k is a counter indexing

the current sensed wedge ∗/
2m. If W = ∅, then sense W0 = W (x,−→xT ).

Else, set W0 = W ; set W = ∅.
3m. Compute LTG(W0).

If xT ∩W0 ∈ F, and d(x, T ) > R, then add Tg = xT ∩ C to LTG(W0).

Compute G1 = {V ∈ LTG
∣∣ d(V, T ) ≤ min(d(x, T ),dLeave)}.

4m. If T ∈ G1, then move to T ; set done = True; return.

5m. If G1 = ∅,
then call BF (x, T,W0,“none,” ∅, 0). /∗ Exit MtG (); go to (1b). ∗/
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6m. Else, find the shortest path to goal within G1 ∪ T , call it P .

Find PR = P |W0 = xF . /∗ F is the “focus point” ∗/
Let W = W0.

F = slide(x, T, F,W,Ob, ρ
+). /∗ check the sliding condition ∗/

7m. If F = Tg, then go to (11m).

8m. If Vloop 6= ∅ and Vloop ∈ ∂Osensed + (i.e., in the positive direction on the

sensed boundary), then break (return done = False).

/∗ loop encountered; halt ∗/
9m. If F ∈ int(W ), then

if ∃V ∈ G1 such that coll(x, V, F ) & d(x, V ) < d(x, F ),

then if O is the blocking obstacle, let ~tF be the tangent to ∂O at F .

If ~tF · −→FT < 0, then F = change F(x, F,G1, T, flag(F changed)).

If F 6= ∅, then go to (9m) to check new ~tF .

Else, call BF (x, T,W, ρ+, Vloop, k). /∗ Exit MtG (); go to (1b). ∗/
Else, record slide(x, T, F,W ); go to (11m).

10m. If F ∈ ∂W0, then if O is the obstacle containing F , let ~tF be the tangent

to ∂O at F .

If ~tF · −→FT < 0, then F = change F(x, F,G1, T, flag(F changed)).

If F 6= ∅, then go to (9m) to check new ~tF .

Else, call BF (x, T,W, ρ+, Vloop, k). /∗ Exit MtG (); go to (1b). ∗/
Else, begin “Virtual MtG”:

If ρ+ = “none,” temporarily define the direction of rotation

from ~v0 to −→xF as positive, P+; else, set P+ = ρ+.

Let ∂W+ be the positive bounding ray of W .

If ∠(~v0, ∂W
+) < π/2 , then k = k + 1; sense Wk = W (x,~vk),

where ∠(−→xT ,~vk) = 2kα. Let W =
⋃sensedWi(x).

Compute LTG(W ), G1(W ), then F (W ).

F = slide(x, T, F,W,Ob, P
+). Go to (8m).

Else, F = change F(x, F,G1, T, flag(F changed)).

If F 6= ∅, then go to (9m) to check new ~tF .
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Else, call BF (x, T,W, ρ+, Vloop, k). /∗ Exit MtG (); go to (1b). ∗/
11m. Execute PR.

}
End.

The function change F determines whether F can be changed (i.e., F has not already

been changed at x, and a change would not violate the sliding condition). If allowed,

the function returns a new F ′; otherwise, it returns ∅.

nodetype change F(x, F,G1, T, flag(F changed)) {
1c. If flag(F changed), then return F = ∅.
2c. If (ρ+ 6= “none”) and (∠(−→xT ,−→xF ) > 0), then return F = ∅.
3c. Find Y = the other sensed endpoint of the blocking obstacle Ob.

4c. Set flag(F changed) = True; return F = Y .

}

Upon entering “sliding mode,” the function record slide resets the values of the

global parameters Ob, ρ+ and Vloop.

void record slide(x, T, F,W ) {
1r. Let Ob be the blocking obstacle.

2r. If ρ+ = “none,” let ρ+ mark the positive rotation direction about x,

defined by ∠(−→xT ,−→xF ) > 0.

3r. If Vloop = ∅, then:

Let Visible(x,W ) be the star-shaped set such that ∀n ∈ Visible(x,W ),

−→xn ∈ F. Let ∂Osensedb = Visible(x,W ) ∩ ∂Ob.
Let e− be the endpoint of ∂Osensedb in the negative direction.

Set Vloop = e−.

}

The function slide is the key function in “sliding mode.” It enforces the sliding

condition (if the algorithm is in “sliding mode”) by checking the position of F

within the robot FOV. Based upon the result, the function either exits “sliding

mode,” or changes F to satisfy the sliding condition.
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nodetype slide(x, T, F,W,Ob, P
+) {

1s. IfP+ = “none,” then return F .

2s. If F = Tg, then reset slide; return F .

3s. Let Visible(x,W ) be the star-shaped set such that ∀n ∈ Visible(x,W ),

−→xn ∈ F. Let ∂Osensedb = Visible(x,W ) ∩ ∂Ob.
Let e+ be the endpoint of ∂Osensedb in the positive direction.

4s. If F /∈ ∂Osensedb , then reset slide; return F .

5s. Return e+.

}

The function reset slide resets the global parameters associated with “sliding” to

their initial (“direct mode”) values.

void reset slide {
1e. Set ρ+ = “none,” set Vloop = ∅, and set Ob = ∅
}

4.4 Boundary Following

The basic idea of BF , boundary following, is to skirt the blocking obstacle until

progress can be made once more toward the goal. As with MtG , BF is split into two

submodes. “Normal BF ” uses two wedge views, one toward the goal and one in the

direction of travel around the obstacle boundary, to determine whether a clear path

towards the goal exists while the robot circumnavigates the obstacle. Immediately

after a switch from MtG to BF , however, the robot must determine its direction of

travel around ∂Ob, the blocking obstacle. If ρ+ is not already defined, “Virtual BF ”

is used to take full advantage of the information which can be gleaned at the current

distance from the obstacle (arguably more than from a closer range), to choose this

direction efficiently (Fig. 4.11). (The primary motivation for “virtual BF ” is the

idea that it is less costly for the robot to swivel its sensors than for the robot to

actually move.) In essence, the robot will swing its sensor array back and forth in a

prescribed manner, to search for the “best” place to move and begin “normal BF .”
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More precisely, in “virtual BF ” the robot initially scans the wedgeW1 = W (x,~v1),

where in this case the positive angular direction is chosen by comparing the tangents

to ∂Ob at the intersection with ∂W0; that is, if ~tl,~tr are the two tangents (at the

intersection points el (left) and er (right), respectively), then if ~tl · ~v0 ≥ ~tr · ~v0, then

∠(~v0,−→xel) > 0. Recall that the vector ~vk, k ∈ Z, is defined by ∠(−→xT ,~vk) = 2kα.

As before, let W =
⋃sensed
k Wi(x) (in this case, W = W0 ∪ W1), and let ∂W+

(∂W−) be the bounding ray of W , ~r, such that ∠(−→xT ,~r) > 0 (< 0) (i.e., ∂W+

(∂W−) is the edge of W in the positive (negative) angular direction). The planner

computes LTG(W ). (N.B., we use here the LTG, not G1, since during BF , the

path is allowed to stray farther from the goal than is permitted during MtG .) If ∃ a

node V ∈ LTG(W ) ∩ ∂Ob such that V ∈ int(W ), the robot moves to V and begins

αR

goal

robot

V

Vloop

closest point

dreach

Figure 4.10: Nodes used for
BF (Boundary Following)

“normal BF ,” first recording two features (Fig.

4.10): dreach, the distance between T and the clos-

est point to T encountered so far on ∂Ob, and

Vloop = ∂W
− ∩ ∂Ob (as well as the final direction

of traversal around the obstacle, ρ+). dreach is used

to test the leaving condition, and Vloop is used to

determine whether the robot has executed a loop.

If there is no such node V , the planner directs the

sensing array to scan W−1 = W (x,~v−1), constructs

W = W0 ∪W1 ∪W−1, and searches the freshly expanded LTG(W ). In this wise,

the robot scans back and forth until a suitable node is found, then travels there

to begin “normal BF .” (If the robot has already scanned additional wedges from x

when “virtual BF ” begins, then the robot scans one wedge at a time in a manner

which “balances” the visible region with respect to the direction toward the goal,

evaluating LTG(W ) after each wedge, before reverting to back-and-forth scanning.)

“Virtual BF ” ends when one of three events are detected:

1. ∃V ∈ LTG(W )∩ ∂Ob such that V ∈ int(W ), and this node is not the result of

an occluded boundary (see item (3)). In this case, further scanning will not

necessarily yield a shorter path. The robot moves to V , and begins normal



90

goal

robot

W0

goal

robot

W
W0

1

goal

robot

W
W0

1

-1W
V

Figure 4.11: “Virtual BF .” The figure on the left depicts the first part of a “virtual
BF ” step. The nodes of LTG(W0) are marked with black circles. Since @V ∈
int(LTG(W0)), the robot scans W1 (center). Again, @V ∈ int(LTG(W0 ∪W1)), so
the robot scans W−1 (right). Now, V ∈ int(W0 ∪W1 ∪W−1), so “virtual BF ” ends.

BF .

2. The next negative wedge to be scanned covers a region previously scanned

(that is, k < 0 and |∠(~v0, ~vk)| ≥ π). In this case, the robot is trapped by an

encircling obstacle, and the algorithm halts.

3. ∃V ∈ LTG(W ) with V ∈ int(W ), but V /∈ ∂Ob sensed. In this case, an

obstacle partially obscures the blocking obstacle boundary (see Fig. 4.12).

Let V, Vb ∈ LTG(W ) be points such that V, Vb ∈ int(W ), V /∈ ∂Ob sensed,

Vb ∈ ∂Ob sensed, and x, V , Vb are collinear. We call Vb a “framing node,” since

it “frames” the sensed extent of ∂Ob. If there is only one “framing node” in

the current view, the robot scans once more in the opposing direction, and

then no matter the outcome, “virtual BF ” ends. If a node as in item (1) is

found, the robot moves there and begins normal BF . Otherwise, the robot

moves to Vb. If, on the other hand, there are two “framing nodes,” Vl and Vr,

the rover moves to Vl iff |∠(~v0,
−→
xVl)| > |∠(~v0,

−→
xVr)|). At this point, the rover

begins normal BF .

In normal BF , at the start of each step, the robot senses W0 (as always, k = 0

indicates the direction toward the goal), and searches G1(W0). BF exits here if:

1. T ∈W0, in which case the robot moves to T and the algorithm is done, or
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Figure 4.12: Framing nodes. The wedge
is directed towards the goal. There are
three visible obstacles: O1, O2, and Ob,
where the latter is the blocking obsta-
cle; and two “framing nodes,” Vl and Vr.
The nodes of the LTG are marked. Note
that ∃V ∈ LTG(W ) with V ∈ int(W ),
but V /∈ ∂Ob sensed.

2. ∃V ∈ G1(W0) such that d(V, T ) < dreach, the leaving condition, in which case

the planner resets dLeave to d(V, T ), and begins a new MtG segment.

If neither of these conditions hold, the planner computes ~tx, the tangent to ∂Ob at

x (pointing in the established direction, ρ+), and directs the sensing array to scan

W (x,~tx). If Vloop ∈ W (x,~tx), and Vloop ∈ the connected portion of ∂Ob containing

x, the robot has executed a loop—therefore, the goal is unreachable, and the algo-

rithm halts. Otherwise, the planner computes V ∈ ∂Ob ∩ LTG(W (x,~tx)) such that

d(x, V ) > d(x, V ′) ∀V ′ ∈ ∂Ob ∩ LTG(W (x,~tx)). The robot records dreach, executes

this subpath, then begins a new “normal BF ” step.

In pseudocode, the BF behaviour can be described more explicitly: (For the

sake of simplicity in the following, assume that W = W0 and k = 0.) The main BF

function uses two subfunctions, frame and record, which are described afterward.

Boundary Following: Boolean BF (x, T,W, ρ+, Vloop, k)

1b. Initialisation Global variable:

record(x, T, ρ+, 0,W ,Ob, 1). /∗ Set dreach ∗/

“Virtual Boundary Following”

If ρ+ = “none” { /∗ Direction of traversal around obstacle is undefined ∗/
2b. Define P+ such that if ~tl,~tr are the two tangents (at el and er,

respectively), then if ~tl · ~v0 ≥ ~tr · ~v0, then ∠(~v0,−→xel) > 0.

/∗ Choose a temporary positive direction around O (the blocking

obstacle), P+, based upon the tangents to ∂O at ∂O ∩ ∂W0 ∗/
3b. Set k = 1.
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Do { /∗ until the new wedge would overlap an area previously sensed ∗/
4b. Sense Wk = W (x,~vk), where ∠(−→xT ,~vk) = 2kα.

/∗ e.g., W1 abuts W0 on the positive side chosen in (2b) ∗/
5b. Let W =

⋃sensedWi. Compute LTG(W ).

6b. If ∃ a node V ∈ LTG(W ) such that V ∈ int(W ), then:

if ∃V ′ ∈ LTG(W ) such that V ′ /∈ int(W ) ∩ ∂Ob, then

move to frame(x, T, P+, k,W ,Ob); go to (9b).

/∗ Begin normal BF ∗/
Else, record(x, T, P+, k,W ,Ob, 0). Move to V ; go to (9b).

7b. Else, /∗ gaze determination ∗/
if k < 0, then set k = |k|+ 1.

Else, set k = −k.
} until (k < 0 and |∠(~v0, ~vk)| ≥ π) /∗ the new wedge would overlap

an area previously sensed ∗/
8b. Return done = False. /∗ Robot is encircled by an obstacle ∗/
}

“Normal” Boundary Following

(ρ+ is defined) /∗ Direction around obstacle established. Note that x ∈ ∂O
(i.e., x is within ε of ∂O), since ρ+ not recorded by MtG

unless robot moves to obstacle boundary ∗/
While ! done {
9b. If W0 /∈W , then sense W0 = W (x,~v0). Let W =

⋃sensedWi.

10b. Compute G1(W ) (as in (2m)).

11b. If T ∈ G1(W ), then move to T ; return done = True.

12b. Else, if ∃V ∈ G1(W ) such that d(V, T ) < dreach (the leaving condition),

then set dLeave = d(V, T ). Call reset slide (see MtG pseudocode).

Call MtG (x, T,W0). /∗ Exit BF ; goto (1m). ∗/
13b. Let ~tx be the tangent to ∂O at x+. /∗ i.e. pointing in the positive

direction according to ρ+ ∗/
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14b. If W~tx
/∈W , then sense W~tx

= W (x,~tx). Let W = W~tx
∪
(⋃

i>0Wi

)
.

15b. If Vloop ∈W ∩ ∂Ob, then return done = False.

/∗ the robot completed a loop, seeing the entire

obstacle boundary; goal is unreachable ∗/
16b. Compute LTG(W ). Find {V ∈ ∂Ob ∩ LTG(W )

∣∣ d(x, V ) > d(x, V ′),

∀V ′ ∈ ∂Ob ∩ LTG(W )}. /∗ i.e., the farthest the robot can

advance along ∂Ob in this view. ∗/
17b. record(x, T, ρ+, 0,W ,Ob, 0).

18b. Move to V.

}
End.

The function frame is used to determine the final goal of “virtual BF ” when the

robot has detected a “framing node.” In both this function and in record, let

Visible(x,W ) be the star-shaped set such that ∀n ∈ Visible(x,W ),−→xn ∈ F. Again,

coll(a, b, c) checks for collinearity of a, b, c. V +
frame and V −frame are the nodes in the

positive and negative direction, respectively, which obscure the blocking obstacle

(i.e., V +
frame /∈ ∂Ob). Having encountered one such node, this function scans a

single wedge in the opposing direction, then chooses an appropriate subgoal for

“virtual BF .” If there are already two such nodes, the function does not scan any

additional wedges, but rather chooses a subgoal using the available information.

nodetype frame(x, T, P+, k,W ,Ob) {
1f. Let flag = 0. Set V +

frame = ∅. Set V −frame = ∅.
2f. Let ∂Osensedb = Visible(x,W ) ∩ ∂Ob.

Let ∂O+
b (∂O−b ) be the sensed boundary endpoint in the positive

(negative) direction.

3f. If ∂O+
b ∈ int(W ), then

if ∃V ∈ LTG(W )− ∂O+
b such that V ∈ int(W ) and coll(x, V, ∂O+

b ),

then let V +
frame = ∂O+

b .

Else, record(x, T, P+,+1,W ,Ob, 0). Return ∂O+
b .
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4f. If ∂O−b ∈ int(W ), then

if ∃V ∈ LTG(W )− ∂O−b such that V ∈ int(W ) and coll(x, V, ∂O+
b ),

then let V −frame = ∂O−b .

Else, record(x, T, P+,−1,W ,Ob, 0). Return ∂O−b .

5f. If V +
frame 6= ∅, then

if V −frame 6= ∅, then

if |∠(~v0,
−−−−−→
xV +

frame)| ≥ |∠(~v0,
−−−−−→
xV −frame)|,

then record(x, T, P+,+1,W ,Ob, 0). Return V +
frame.

Else, record(x, T, P+,−1,W ,Ob, 0). Return V −frame.

else, flag = 1. Go to (6f).

else, flag = 1. Go to (7f).

6f. If flag 6= 1 and |∠(~v0, ~vk)| < π, then /∗ Recall ∠(−→xT ,~vk) = 2kα. ∗/
if k > 0, then sense Wnew = W (x,~v−k). Go to (8f).

else, sense Wnew = W (x,~vk−1). Go to (8f).

Else, record(x, T, P+,+1,W ,Ob, 0). Return V +
frame.

7f. If flag 6= 1, then

if k < 0, then sense Wnew = W (x,~v|k|+1).

else, sense Wnew = W (x,~vk+1).

Else, record(x, T, P+,−1,W ,Ob, 0). Return V −frame.

8f. Compute LTG(Wnew ∪W ). Go to (2f).

}

The function record sets the values of the parameters associated with BF . Note that

Ob marks the “state” of recognising that the robot is following a single obstacle

boundary (i.e., a continuous curve in the range data).

void record(x, T, P+, k,W ,Ob, flag) { /∗ Records dreach, Vloop, and ρ+ ∗/
1r. Let ∂Osensedb = Visible(x,W ) ∩ ∂Ob.
2r. Let N = {n ∈ ∂Osensedb

∣∣ d(n, T ) < d(m,T ),∀m ∈ ∂Osensedb }.
Set dreach = min(dreach,d(N,T )).

If flag 6= 1 {
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3r. If Vloop = ∅, then:

Let ∂W+ (∂W−) be the bounding ray of W in the positive (negative)

direction (according to P+).

if k > 0, then set Vloop = ∂W
− ∩ ∂Osensedb .

Else, set Vloop = ∂W
+ ∩ ∂Osensedb .

4r. If ρ+ = “none,” then

define ρ+ such that ∠(~v0, ~vk) > 0.

}
}

The Wedgebug algorithm thus deals with the limited FOV of the robot in an

efficient manner. The “virtual” submodes both take advantage of the lower cost of

panning the sensor array over actual motion, while minimising the number of views

required at each step.

4.5 Proof of Completeness

The proof of completeness of the Wedgebug algorithm follows. It is analagous to the

TangentBug completeness proof, with a few differences in technical details due to the

limited robot FOV. The basic concept is that a path generated by the Wedgebug

algorithm consists of a finite number of motion segments, where a new segment

is begun when the algorithm switches between its motion-to-goal and boundary

following behaviours. Each segment can be shown to comprise a finite number of

subsegments, and each of these subsegments is finite in length. Thus, the entire

path has finite length.

We first give an intuitive sketch of the proof. The Wedgebug algorithm switches

from MtG to BF iff the robot senses an inescapable local minimum in d(x, T ) (that

is, an obstacle completely blocks the robot’s FOV). Clearly, the number of MtG →
BF switches is limited by the total number of local minima of d(·, T ) in the robot

environment. In the case where the local minima are not isolated, we can show

that the number of MtG to BF switches is limited by the total number of basins
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of attraction of d(·, T ). Furthermore, since nodes in G1 (used to plan the MtG

subpaths) are constrained to lie within BT (dLeave), and since BF can switch to MtG

only at points Li such that d(Li, T ) < dLeave < d(S, T ), any points where MtG →
BF behaviour switching points are restricted to (the closed ball) BT (d(S, T )). It

was shown in Chapter 3 that there are finitely many disjoint basins of attraction

for the distance function in the relevant portion of the robot’s environment. Hence,

there are a finite number of possible MtG → BF switches, so in particular there is a

last MtG segment (if no BF segment terminates the path either at T ∈ ∂O for some

O or by completing a loop around an obstacle O). Thus, Wedgebug terminates after

finite path length.

We now consider the details of Wedgebug behaviour. To define the endpoints

of each type of motion segment, we use the terminology listed here (which is an

extension of that used by Kamon, Rimon, and Rivlin [21]):

Hi point where robot first senses obstacle i

Di point where robot leaves obstacle i (i.e., the blocking obstacle changes)

Si switch point between MtG & BF segments (MtG → BF ) (associated

with obstacle i)

Mi “local minimum” point associated with Si (i.e., the point −→SiT ∩ ∂Oi)
Li point where BF leaving condition is met on obstacle i (switch point

between BF → MtG )

Pi point where loop is detected on obstacle i (d(Pi, Vloop) ≤ R)

F focus point (point toward which robot is currently heading)

Note that for MtG , F is either an endpoint of a segment of sensed obstacle boundary,

or F = Tg.

We delineate every possible type of segment which the Wedgebug algorithm can

generate. Next, we show that each type of segment has finite length.

Types of MtG segments:

direct: [Li,Hi+1] Result when the robot leaves obstacle i, either

[Di,Hi+1] from a sliding MtG segment or from a BF segment,
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and senses (blocking) obstacle i+ 1.

[Li,Si+1] Result when the robot leaves obstacle i, either

[Di,Si+1] from a sliding MtG segment or from a BF segment,

and switches to BF at obstacle i+ 1.

Note: In direct segments, motion is directed towards the goal (F = Tg).

sliding: [Hi,Di] Result when the focus point F slides around

[Hi,Pi] obstacle i, until either robot leaves the

[Hi,Si] obstacle, encounters a loop, or switches to BF ˙

Note: In sliding segments, motion is directed toward an endpoint of the

obstacle boundary. This focus point, F, “slides” along the obstacle

boundary until either the algorithm switches to boundary following, or the

blocking obstacle is changed.

Types of BF segments:

[Si,Li] Result when the robot either satisfies the leaving condition,

[Si,Pi] or encounters a loop.

Note: “Virtual BF ,” if used during a given BF segment, comprises only the

initial step of the segment. It serves to define the direction of traversal

around the obstacle; once that direction is defined for a given BF segment,

“virtual BF ” is never again called during that segment. In addition,

between “virtual BF ” and sensing along the obstacle tangent, no part of the

obstacle boundary between Pi and Li is missed.

A roadmap of the proof is as follows: We first show that each type of segment,

BF and MtG , has finite length. In these proofs, we use the notation meas(A,B)

to denote the (arc)length of the path between A and B, considered as a rectifiable

curve in R2. In many cases, this involves the arclength of a portion of an obstacle

boundary. We denote the perimeter of an obstacle O by meas(∂O). The proof for BF
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segments is straightforward, but we must break the MtG segments into two types

of subsegments, “direct” and “sliding.” The proof for “sliding” MtG subsegments

requires more work than for “direct,” as we must derive the path length from the

length of the path of the focus point F . Then, we put together the types of MtG

subsegments to show that an entire MtG segment has finite length.

Next, we show that the distance of the robot from the goal is nonincreasing

during MtG segments, and that the distance to T is strictly decreasing between

successive (generalised)‡‡ local minima which trigger mode changes along the path.

Then we show that Wedgebug switches modes when the robot is in a basin of

attraction of a generalised local minimum of the distance function, and that the

algorithm will switch only once for a given basin; hence the number of possible mode

switches is limited by the number of basins. Therefore, we can show that Wedgebug

terminates after traversing a finite length path, and can give a (conservative) upper

bound on the path length.

Lemma 2. BF segments are finite length.

Proof. There are two cases: a) Let us first consider the path segment [Si,Li] (see

Fig. 4.13). In the usual case, this segment can be considered a shortcut, compared

to the path which would be taken by a robot with contact sensors executing the

TangentBug algorithm. If we imagine that the robot’s sensor range R → 0, the

resulting TangentBug path, called the “contact sensor equivalent” path, consists of

two pieces: [Si,Mi], and [Mi,Li], where Mi is the local minimum (along the line←→SiT )

associated with Si. Let N designate the point where the robot actually touches ∂Oi

during this BF segment. By the triangle inequality,

meas([Si,Li]) = d(Si, N) + meas([N,Li])

≤ d(Si,Mi) + meas([Mi, N ]) + meas([N,Li]).

‡‡See Chapter 3, Sect. 3.4
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Figure 4.13: Points of interest for
proof that boundary following seg-
ments are finite length.

We have that (using the appropriate value for dLeave)

d(Si,Mi) ≤ d(Si, T ) ≤ dLeave

≤ d(S, T ) <∞ (by assumption).

Also, since Mi, N , and Li all lie on ∂Oi, and the segments MiN and NLi do not

overlap; and since the obstacle perimeter, meas(∂Oi), is finite, we have

meas([Mi, N ]) + meas([N,Li]) = meas([Mi,Li]) ≤ meas(∂Oi) <∞.

Thus, this segment is (crudely) bounded by

meas([Si,Li]) ≤ d(Si,Mi) + meas([Mi, N ]) + meas([N,Li])

≤ d(Si,Mi) + meas([Mi,Li])

≤ d(Si, T ) + meas(∂Oi)

≤ dLeave + meas(∂Oi) <∞.

Of course, we also have d(Si,Mi) ≤ d(Si, N) ≤ R, where R is the sensing range, and

R < ∞ by definition. We will subsequently use this fact to determine a bound on

the entire pathlength.)

b) Let us now consider [Si,Pi]. Similarly, this path can be considered a short-

cut relative to its “contact sensor equivalent path,” which consists of the two

pieces, [Si,Mi], and [Mi,Mi] (measured around the obstacle boundary). Thus,

meas([Si,Pi]) ≤ d(Si,Mi) + meas(∂Oi) <∞.



100

Note that it is possible to have Si+1 = Li for some i. That is, the leaving

condition could be satisfied, and then the robot immediately switches back to BF .

Even if the robot happens to end up following the same obstacle boundary, once

the leaving condition is satisfied, the first BF segment ends. (In effect, the two BF

segments are separated by an MtG segment with path length = 0. Note that even

with an MtG segment with zero path length, there is at most one BF → MtG switch

per BF segment, and Corollary 2 shows that there is at most one MtG → BF switch

per basin of attraction, thus (with Lemma 1) prohibiting infinite switching between

modes.)

The analysis of MtG segments is not as straightforward as the analysis of BF

segments. The difficulty lies in the fact that the robot has a limited sensor range,

and thus may sense new obstacles as the robot progresses towards the goal. While

the robot does not sense any (blocking) obstacles, its motion is directed toward the

goal (F, the focus point of motion, equals Tg). However, once the robot senses one

or more obstacles, the focus point F may change to be one of the endpoints of the

sensed obstacle boundaries. If this occurs, the robot enters “sliding mode,” which

persists until 1) the blocking obstacle changes (or no longer blocks direct progress

toward the goal), 2) the algorithm switches to BF , or 3) the robot encounters a

loop.

Each MtG segment can be resolved into a series of subsegments differentiated

by the position of F. Where F = Tg, we say that the subsegment is “direct” (i.e.,

motion is directly towards the goal); otherwise, F lies on an obstacle boundary, and

we say the subsegment is “sliding” (since the focus point F “slides” along the sensed

obstacle boundary). The analysis of “direct” subsegments follows:

Lemma 3. “Direct” MtG subsegments are finite length.

Proof. Since motion along these segments is directed straight towards the goal, we

have trivially that for “direct” subsegment xiyi (i.e., the subsegment of the path

between points xi, yi ∈ F),

meas([xi, yi]) = d(xi, yi) ≤ d(xi, T ) ≤ d(S, T ) <∞ (by assumption).
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Further, “direct” segments can be broken into two pieces, call them aibi and biyi.

If the segment does not immediately follow a BF segment, then ai = bi = xi.

Otherwise, let ai = Li and bi = F (Li) be the initial and final points of the first step

of the segment—that is, the first sensing/motion cycle of this “direct” subsegment—

respectively. We show that each biyi subsegment begins at least as close to the goal

as the prior MtG subsegment ended.

If xi−1yi−1 is the preceeding MtG subsegment, we have two cases. If the previous

subsegment immediately adjoins the current subsegment, bi = yi−1. However, if a

BF segment intervenes, the parameter dreach ensures that xi lies within the distance

R of a point V which is closer to the goal than any point the robot reached while

following the obstacle boundary, and dLeave ensures that d(F (xi), T ) ≤ d(V, T ). If

we call the closest point reached during the BF segment xBF , we know that

d(xBF , T ) ≤ d(Mi, T ) < d(Si, T ),

since Mi is closer to the goal than Si, and Mi is contained in the set of points

“reached” by the robot on the obstacle boundary. Finally, yi−1 = Si: that is, the

final point of the previous MtG subsegment is precisely the switching point marking

the start of the intervening BF segment. Therefore, since bi = F (xi), we have

d(bi, T ) < d(yi−1, T ).

Since each byi subsegment begins closer to the goal than the prior MtG subseg-

ment ended, the sum of the path lengths of all the byi segments is ≤ d(S, T ). Imagine

rotating the set of all byi subsegments (over the complete path) as if they were on

a nested set of dials, so all of these subsegments line up with one another (see Fig.

4.14). There will be no overlap, only possible dropouts (holes in the line) where

sliding or BF segments occur. In addition, each ab subsegment has path length

≤ R, and has nonzero length only immediately following a BF segment. Since each

BF segment is uniquely identified with a local minimum, clearly, then, we have the
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bound

“direct” subsegments∑
i

meas([xi, yi]) =
∑
i

(d(ai, bi) + meas([bi, yi]))

=
∑
i

d(ai, bi) +
∑
i

(meas([bi, yi])) ≤ R× (#Minima) + d(S, T ).

The “sliding” segments take a bit more work. Each sliding segment, combining

“virtual MtG” and “sliding MtG” steps, is defined by a single blocking obstacle,

and a fixed sliding direction. The following corollary, originally presented in [21]∗,

is used in Lemma 4 to show that the path length of a single sliding segment is finite.

Corollary 1. During MtG, the blocking obstacle may be changed only at a finite

number of tangent points on each obstacle.

Proof. The blocking obstacle will only be changed when the robot has a clear line

of sight toward the target, relative to the current blocking obstacle: i.e., when the

line ←→xT is tangent to the current blocking obstacle. The number of points on each

obstacle O tangent to rays radiating from the target is finite. Although it is not

proven in [21] that the number of these “tangent points” xt is finite, note that the xt

are local extrema on ∂O of the “radial distance function” gT . Define gT as follows:

if x = (r, θ) are the goal-centric polar coordinates of a point x, then gT (x) = θ.

Then, gT is a scalar function, as is the distance to the goal. Therefore, by applying

the definition of generalised critical points, and by the same argument as in Chapter

3, Section 3.4.3, it can be shown that there are a finite number of local generalised

critical points of gT on ∂O. Further, note that the blocking obstacle is changed

at most once per generalised critical point: that is, we say that the robot is still

following the obstacle boundary, even if it is moving directly towards the goal, if

the robot remains within distance ε of the boundary. Thus, the blocking obstacle is
∗The original statement of this corollary appears in [21] as Corollary 4.8; however, the

proof presented there is incomplete. The proof we present here is applicable to piecewise
C1 obstacles.
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Figure 4.14: Sketch of the proof that the sum of direct segments’ lengths is finite. (a)
Path generated by Wedgebug, showing the gaze wedges along the way. The second
path segment invokes “virtual MtG ;” the fifth, “virtual BF .” (To simplify the plot,
the wedge toward the goal for each BF step is not shown.) (b) The complete path.
“Direct” MtG segments are solid and dotted. (c) The biyi (solid) segments shown
as if they are on a nested set of dials centered at the goal. (d) The biyi segments’
“dials” have been rotated (in the indicated directions) so the segments are aligned.
Clearly, the sum of the length of the solid segments is less than the distance from
start to goal, and the length of the dotted segment (for the one local minimum
encountered) is ≤ R. (Compare with Figure 3.4 in Chapter 3.)
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changed only when a convex corner point xc of the current generalised critical point

is within G1. Since the robot executes the entire visible subpath (which passes

through xc) before re-sensing, and since G1 contains only those points closer to

the goal than the current position, no subsequent G1 will contain the same convex

corner point. Thus, we have shown that the blocking obstacle may be changed at a

finite number of points on each obstacle boundary.

Lemma 4. The path length of a single sliding segment, along which the sliding

direction and blocking obstacle are fixed, is finite.

Proof. We first show that the path length Df followed by the focus point F is finite,

then that the path length D traversed by the robot is finite. There are three cases.

(a) [Hi,Di]: the sliding segment ends when the blocking obstacle changes. Since the

sliding direction is fixed, F cannot complete a loop around the blocking obstacle

boundary: Cor 4.8 shows that the blocking obstacle is changed (and thus the sliding

segment is ended) when F lies on a tangent to the obstacle which passes through

the goal. Thus,

Df < meas(∂Oi) <∞.

(b) [Hi,Pi]: the sliding segment ends when a loop is detected. Since the loop

is detected by sensing the point Vloop, which is explicitly set at Hi as the sensed

endpoint of the blocking obstacle in the opposite direction from traversal, then if

F (Hi) is the position of F at Hi, we have

Df = meas([F (Hi),Pi]) ≤ meas([F (Hi), Vloop) ≤ meas(∂Oi) <∞.

(c) [Hi,Si]: the sliding segment ends when the algorithm switches to BF . Since

the robot switches to BF before either changing the blocking obstacle (i.e., reaching

a tangent point) or detecting a loop, the length of the path followed by F must be

bounded by the longest of these two paths:

Df ≤ meas(∂Oi) <∞.
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The motion of the robot during “sliding” segments is a series of steps† consisting

of straight lines between the current robot position x and F (x). Other than the

initial step, during which the robot first acquires the obstacle boundary, the robot

skips from point to point on the obstacle boundary (since F is a sensed endpoint

of O until the time that sliding segment ends). Thus, these latter steps serve as

shortcuts along Df : for x ∈ ∂O, d(x, F (x)) ≤ Df |[x,F (x)] (the distance F slides

along the obstacle boundary between the initial point x to the step’s final focus

point position F (x)). Clearly, since Df is finite, and since each sliding step is

nonoverlapping and has nonzero path length, Df is covered by a finite number of

steps. Further, since the sliding segment begins when O is first sensed, the initial

step must have path length ≤ R. Therefore,

D ≤ Df +R <∞.

Lemma 5. MtG segments are finite length.

Proof. Consider an entire MtG segment, [Li, Yj ], where Yj = Sj or Yj = Pj , consist-

ing of several direct and sliding subsegments (we may have Li = Hi+1). There are a

finite number of obstacles, by assumption. Each sliding segment is associated with

a single blocking obstacle. By Cor. 4.8, the blocking obstacle can only be changed

at a finite number of points on each obstacle. Thus, the total number of possible

changes of blocking obstacle is finite. Therefore, there are a finite number of sliding

subsegments, which were each shown to have finite length in Lemma 4. Lemma 3

shows that the direct segments have finite length. In conclusion, the entire MtG

segment, [Li, Yj ], has finite path length.

All of these bounds on path length are conservative, but serve to show that the

segments used in Wedgebug are all finite length. All that remains, then, is to show

that there are a finite number of these segments.

†Recall that a step is a single sensing/motion cycle executed by the robot, whereas a
segment is a contiguous set of steps sharing a common planner mode.
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Proposition 5. The distance from the robot to the goal is nonincreasing during an

MtG segment.

Proof. This statement holds trivially due to the definition of G1: all nodes V un-

der consideration for the current step must satisfy d(V, T ) ≤ min(d(x, T ),dLeave)

(where x is the position of the robot at the start of the current step), for all types of

MtG segments. Therefore, if xiyi is an MtG step, by necessity d(yi, T ) ≤ d(xi, T ) =

d(yi−1, T ) ≤ d(xi−1, T ). (Further, because the step consists of a straight line be-

tween xi and yi, the robot’s distance to the goal along this subpath is nonincreasing.)

Since the entire MtG segment [Li, Yj ] is a connected chain of these steps, we have

d(Yj , T ) ≤ d(Li, T ).

We note that although the points Mi referenced in the previous proofs are not

themselves true local minima in d(·, T ), each Mi is uniquely associated with a (gen-

eralised) critical point, mi, by virtue of the fact that the algorithm switches to BF

precisely when the robot is in the basin of attraction of mi.

Proposition 6. Wedgebug switches from MtG to BF when the robot is in a basin of

attraction of the distance function, associated with a generalised critical point mi,

on some obstacle boundary ∂Oi.

Proof. This statement is primarily a restatement of the manner in which Wedgebug

uses range sensors to determine when to switch modes. Wedgebug switches from

MtG to BF in two cases: 1) when the tangents at both sensed blocking obstacle

endpoints point away from the goal, and 2) when the robot is in “sliding mode”

and the tangent at the positive sensed blocking obstacle endpoint points away from

T . In both cases, the robot has detected an inescapable local minimum. We know

that the distance function to the goal, fT : R2 → R (see Chapter 3) is smooth.

Also, since the sensed portion of the obstacle boundary ∂Oi is a compact set, we

can consider it a continuous curve, ϕ : I → R2. Then, fT ◦ ϕ is continuous, and so

attains a maximum and a minimum on I.

Now consider case (1). In this case, the minimum cannot be located at either

endpoint, by virtue of the fact that the tangent at each endpoint points away from
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the goal—that is, for endpoint e with tangent ~te (pointing out from the visible re-

gion), ~te · −→eT < 0. Since −→eT is the direction of −−−→grad(fT ), this orientation indicates

that the distance to the goal decreases just inside the visible region from e. There-

fore, there exists a local minimum of fT—and thus a critical point of fT—within the

sensed portion of ∂Oi. Let {mkx} be the set of generalised critical points‡ (i.e., if a

critical point is an arc, choose one point to represent that basin) sensed from robot

position x. Let mi be the sensed g.c.p. closest to T (thus, we have dreach = d(mi, T )

when the robot is at x).

For case (2), note that the robot has been monotonically decreasing its distance

to T as it has travelled along the obstacle boundary. Thus, the robot will need

to monotonically increase its distance from T if it backtracks around the obstacle

boundary. Thus, we have the same situation as in (1), unless the last portion of the

obstacle boundary traversed was a circular arc with its center of curvature at T . In

this case, the arc is a g.c.p. Z, so the negative sensed obstacle boundary is a critical

point of the distance to T . Again, let {mkx} be the set of g.c.p.’s sensed from x,

and choose mi to be the sensed g.c.p. closest to T .

For convenience, we will say that Wedgebug switches modes “at” local minimum

mi.

Lemma 6. The distance from T to successive local minimum points mi−1, mi (as-

sociated with BF switch points) is decreasing: d(mi, T ) < d(mi−1, T ).

Proof. There are two cases, given BF segment SiY , where Y = Li or Pi: a) SiY

directly follows a BF segment. Since the algorithm did not halt after the prior BF

segment–that is, the leaving condition was met–the prior segment must be of type

[Si−1,Li−1]. Further, since the end of any BF segment triggers MtG , we must have

Si = Li−1 (otherwise, an MtG segment would intervene). At Li−1, we know that

there exists a node V in G1(Li−1) which satisfies the leaving condition d(V, T ) <

dreach, by definition, where dreach ≤ d(mi−1, T ). Since the algorithm switched

‡Recall that we define a generalised critical point (g.c.p.) Z of the distance to T as
either an isolated critical point (including “vertices” in the obstacle boundary) or as a path-
connected “arc” of nonisolated critical points. (See Section 3.4.3 for an exact definition.)
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immediately to BF , W (Li−1) must contain the local minimum mi. Because mi is a

local minimum in d(·, T ), we must have d(mi, T ) ≤ d(V, T ). Therefore, we have

d(mi, T ) < dreach ≤ d(mi−1, T ).

b) The BF segment follows an MtG segment. In this case, if X is the subpath

goal of the initial step of the MtG segment, and Si is the switch point marking the

start of the BF segment, we have d(Si, T ) ≤ d(X,T ) by Proposition 5. The prior BF

segment, as in (a), is of form [Si−1,Li−1]. Again, there exists a node V in G1(Li−1)

which satisfies the leaving condition d(V, T ) < dreach, where dreach ≤ d(mi−1, T ).

Before the start of the intervening MtG segment, dLeave is reset to d(V, T ). Thus,

d(X,T ) ≤ dLeave = d(V, T ) < dreach ≤ d(mi−1, T ). Finally,

d(mi, T ) ≤ d(Si, T ) < d(mi−1, T ).

Now we can show the following result:

Corollary 2. Wedgebug will switch from MtG to BF at most once for a given basin

of attraction.

Proof. This statement is a consequence of the fact that the distance to T decreases

between successive (generalised) local minima of fT which trigger mode switches

along the path, and that the distance to T is constant for all points in the ω-limit

set of a given basin.

Lemma 7. Wedgebug terminates after a finite path.

Proof. There are a finite number of obstacles, each with finite boundary. By as-

sumption, d(S, T ) < ∞. MtG can switch to BF only at a local minimum, mi, of

d(·, T ). By Lemma 6, each of these switches occurs closer to the goal than the prior

switch, so the behaviour can switch only once at each local minimum. In addition,

Lemma 1 from Chapter 3 tells us that there are a finite number of relevant critical
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points (basins) in the bounded area BT (d(S, T ) + R). Since each mi is a critical

point, and since each MtG segment is constrained to start within BT (d(S, T ) + R)

by the parameter dLeave–and thus all mi encountered lie within BT (d(S, T ) + R)–

there are a finite number of switches between behaviours. Each BF segment ends

either at a loop, or when the leaving condition is met, when the behaviour switches

back to MtG . Each MtG segment (here we mean a complete MtG segment, including

both direct and sliding portions) ends either at a switching point (associated with a

unique critical point), at a loop, or at the target. Thus, there are a finite number of

segments of each type. By Lemma 2 and Lemma 5, each segment ends after finite

path, so the total path has finite length.

Lemma 8. Wedgebug is complete.

Proof. Lemma 7 shows that Wedgebug completes after finite path length. All that

remains is to show that, if the goal is reachable from the initial robot position, the

algorithm will reach it. This is accomplished by a similar argument to Theorem

2 from [21] (see Chapter 3), which uses the fact that there are a finite number of

critical points (basins) to demonstrate that (if T does not lie on some ∂O, causing

the path to terminate after a BF segment) there must necessarily be a last MtG

segment, terminating at the goal.

Lemma 9. An upper bound on the total path length generated by the Wedgebug

algorithm is

d(S, T ) +R×
∑
j

(
K × (#Minima)j + (#Tangents)j +

1
R

meas(∂Oj) + 1
)
,

where: j ranges over all obstacles intersecting the disc BT (d(S, T )),

meas(∂Oj) is the perimeter of obstacle Oj,

K = 3 + meas(∂Oj),

(#Minima)j is the number of local minima of d(·, T ) around the

perimeter of obstacle Oj,

(#Tangents)j is the number of points on ∂Oj tangent to a line
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through T .

Proof. Lemma 3 yields

Ddirect = R× (#Minima) + d(S, T )

as the bound on the sum of the path lengths of all “direct” MtG segments, where

#Minima is the total number of local minima in d(·, T ) within BT (d(S, T )).

Lemma 2 gives the bound on path length for each BF segment as R+meas(∂Oi),

where Oi is the followed obstacle. The sum of the path lengths of all BF segments

is bounded by
∑

i(meas(∂Oi) + R), where i ranges over the followed obstacles. In

particular, since each BF segment is associated with a single local minimum in

d(·, T ), then for a single obstacle Oi the sum of the path lengths for BF segments

following Oi is bounded by (meas(∂Oi) +R)× (#Minima)i, where (#Minima)i is

the number of local minima of d(·, T ) around the perimeter of Oi. Therefore, the

sum of the path lengths of all BF segments can be bounded by

DBF =
∑
j

((meas(∂Oj) +R)× (#Minima)j),

where j ranges over all obstacles intersecting BT (d(S, T )).

Since the distance to the goal is nonincreasing during MtG segments (Proposition

5), and the distance between MtG segments is decreasing (by Lemma 6), the robot

cannot traverse the same portion of a given obstacle’s boundary twice during two

different “sliding” MtG segments. Thus, the path length of the focus point F over all

“sliding” subsegments can be bounded by Dtotal
f ≤

∑
j meas(∂Oj), where j ranges

over all obstacles intersecting BT (d(S, T )). Now, Lemma 4 shows that each “sliding”

segment adds a length R for the robot’s path. Thus, we need to bound the number

of “sliding” segments. This number is bounded by the number of ways a “sliding”

segment can be terminated: by changing blocking obstacle, switching to BF , or

detecting a loop. Thus, for a single obstacle Oi, the bound on the number of

all “sliding” MtG segments following that obstacle’s boundary is (#Tangents)i +
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(#Minima)i + 1, where (#Tangents)i is the number of points on ∂Oi tangent to a

line through T , and (#Minima)i is the number of local minima of d(·, T ) around

the perimeter of Oi. Therefore, the sum of the path lengths for all “sliding” MtG

segments is

Dslide =
∑
k

(R+Dk
f ),

where k ranges over all “sliding” segments, and

Dslide =
∑
k

R+
∑
k

Dk
f ≤

∑
k

R+
∑
j

meas(∂Oj),

where j ranges over all obstacles intersecting BT (d(S, T )). Finally, we have

Dslide ≤ R×
∑
j

((#Tangents)j + (#Minima)j + 1) +
∑
j

meas(∂Oj).

To summarise, the bound on the total path length is then

Dtotal = Ddirect +DBF +Dslide

≤ d(S, T ) +R× (#Minima) +
∑
j

((meas(∂Oj) +R)× (#Minima)j)

+R×
∑
j

((#Tangents)j + (#Minima)j + 1) +
∑
j

meas(∂Oj)

≤ d(S, T ) +R×
∑
j

(
(3 + meas(∂Oj))(#Minima)j + (#Tangents)j

+
1
R

meas(∂Oj) + 1
)
.

4.6 Summary and Discussion

In this chapter, we have presented the Wedgebug algorithm, a sensor-based motion

planner designed for robots with a sensor FOV limited in both downrange and an-

gular scope. The algorithm uses a simple local world model, and invokes automatic
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gaze control, based upon the sensed environment, to minimise sensing, to avoid un-

necessary robot motion, and to improve overall efficiency. We have also presented

the proof that the Wedgebug algorithm is complete and correct, and have provided

an upper bound on the resulting path length.

During the creation of the Wedgebug algorithm, we made several choices based

upon tradeoffs between robot motion and sensing. The resulting algorithm is com-

plete, and produces paths which are the shortest possible given the knowledge gained

from only the regions sensed. However, it turns out that the final paths produced

by Wedgebug are sensitive to the initial conditions, and to noise in measurements

(especially noise in calculation of obstacle tangents). That is, slight perturbations

can change the direction the robot chooses to skirt around a given obstacle, for

instance. The algorithm presented here strives, perhaps to an extreme, to minimise

the number of sensor queries: once a suitable subpath goal is found, the robot moves

and begins the next step. Several variations to the basic Wedgebug methodology

can be used to improve global performance (i.e., come closer to–or achieve–true

local optimality and improve the deterministic quality of the results), at the cost

of added sensing. For example, the robot could sense, at each step, the full extent

of the blocking obstacle boundary, using as many wedge views as necessary. An

intermediate choice would have the rover sense wedges until it has enough informa-

tion to make a well-informed decision (once it has found a suitable subpath goal,

say for “virtual BF ,” it may sense one more wedge in the opposite direction just to

be certain an equal or better potential goal does not appear). All three variants’

performance could be enhanced by sensing more often–that is, by re-sensing before

the subpath goal is reached, one or more times (in this case, we need to add a

condition similar to the detour condition in [21] to prevent oscillations in the path).

Most importantly, since the extreme version of the algorithm presented here (as well

as TangentBug, which is essentially the extreme case where all possible wedges are

constantly re-sensed) is complete, it is clear that carefully constructed variations

such as those mentioned above will also retain this crucial property.
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Chapter 5

Implementation and Results

5.1 Motivation Redux

As has been discussed in prior chapters, the primary motivation for the work de-

scribed herein is the upcoming series of missions planned for Mars exploration, with

launch dates every two years from 1998 through 2005, culminating in samples re-

turned to Earth from the Red Planet in 2008. Three of these missions feature

rovers, independent mobile spacecraft which will roam the planetary surface in or-

der to conduct in situ experiments on a variety of samples, in various terrains spread

over regions potentially kilometers square. These “mobile geologists,” as they have

been called, will not only learn more about martian geology and geochemistry, etc.,

but also determine which particular samples should be sealed inside a capsule bound

for Earth, where more extensive study is possible than on Mars. These rovers are

direct descendents of the Sojourner rover, which landed on Mars as part of the Mars

Pathfinder mission in July, 1997. In order to expand upon this spectacularly suc-

cessful technology demonstration, the future planned Mars rover missions∗ require

mobile robots which are capable of being operated for up to a year, traversing much

larger distances (up to 100 m/sol, as opposed to Sojourner’s 102 m/83 sols), carry-

ing more instruments to a wider variety of features, and caching samples along the
∗with the exception of the 2001 mission, which, due to technical and political constraints,

will fly a virtual copy of the Sojourner rover. In fact, the 2001 rover will be the refurbished
flight spare from the Pathfinder mission, named “Marie Curie.”
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way [53].

A key advance in functionality required for these new planetary rovers is greater

navigational autonomy, since longer distances must be covered between opportu-

nities to communicate with Earth than in prior missions. For example, the rover

mission planned for 2003 (carrying science payload “Athena”) would have the rover

traverse up to 50-100 meters per sol, between approximately 10am to 3pm Mars

local time. However, the rover will only have limited opportunities to communi-

cate to operators on Earth and to receive instructions. Furthermore, it will not

be possible to anticipate (and thus pre-program) the proper reactions of the rover

to the terrains encountered during the traverse: each rover will be working in un-

known, rough terrain. (The resolution expected from Mars orbiters, for example, is

roughly 300 meters/pixel, with only isolated “postage stamp” regions achieving the

highest resolution of 1.4 m/pixel [50]. Orbiter camera pointing limitations prohibit

attempting to use these highest-resolution images for rover navigation or localisa-

tion.) Thus, an efficient, on-board planner is needed to ensure the rover will make

acceptable progress toward each goal, and to achieve each goal accurately, during

long stretches of unsupervised time during each sol.

As discussed in Chapter 4, useful motion planners for planetary rovers must

satisfy several prerequisites, among which are severe constraints of limited power

and computational capacity, and the high cost of flight components, which translates

into limited memory available on-board the rover. For example, in the 2003 mission

described in Chapter 2, the rover will use a rad-hard R3000 10 MIPS processor

and will have 1-6 MB of on-board memory, of which perhaps 0.5 MB can be used

by the motion planner during operation. One ramification of the limitation on

computational capacity is the time required for executing the motion planner. If

the planner contains heavy computation which, for example, must be executed after

every 10 meter step, a lengthy traverse will take much more time than a traverse

utilising a planner which requires less processing. Not only does this fact impact the

length of the possible traverse (due to time-of-day restrictions based on available

solar power), but also how much of that sol’s duration can be dedicated to science.
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Increasing the proportion of “science time” during each sol is crucial, particularly

when bearing in mind the necessarily limited lifetime of the robotic vehicle.† Thus,

a practical motion planner must utilise the available sensing array in a scheme

which efficiently senses only the data needed for motion planning, requires minimal

memory to store salient features of the environment, and conserves rover motion.

The crux for developing a practical motion planner for the next several planned

missions to Mars is to be able to implement the motion planner on a flight-like

testbed, to ensure both the correct operation of the algorithm in a real-world sce-

nario, but also to be certain the algorithm fits well within the constraints of com-

putational capacity, required memory, and time. The remainder of this chapter

describes the implementation of the Wedgebug algorithm (described in detail in

Chapter 4) on the Rocky7 prototype microrover at the Jet Propulsion Laboratory

(JPL). This system is operated primarily in JPL’s MarsYard. Section 5.2 describes

the testbed vehicle and environment, while Section 5.3 discusses the specific diffi-

culties posed by the testbed and the changes to the algorithm necessary to meet

these challenges. The next section details the actual implementation of the result-

ing “RoverBug”‡ algorithm, including both the expected operational scenario and

the relevant portion of the actual navigation software system for the Rocky7 rover.

Finally, we present the results from experimental traverses in the MarsYard and

elsewhere in Section 5.6.

5.2 Description of the Testbed

The Jet Propulsion Laboratory has produced several robotic vehicles, serving various

purposes. Most germane to the topic at hand is the series of “microrovers,” small-

size six-wheeled robots featuring rocker-bogie suspensions, destined either to fly

to Mars or to remain Earth-bound and test out future technologies for their far-

reaching siblings. Of the latter tribe is the Rocky7 prototype microrover, developed

†There is currently no possibility of repair on Mars.
‡so named due to its descendance from the Wedgebug algorithm (and, in turn, from

TangentBug and the original “Bug” algorithms), as well as for being tuned specifically for
the challenges raised by an actual rover
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by the Long Range Science Rover task at JPL and pictured in Fig. 5.1 [82].

Rocky7 is the next vehicle in the series of research rovers which spawned the

Sojourner rover (Sojourner is the direct descendant of Rocky 4).§ He is roughly

the same size as Sojourner, standing 60 cm long by 50 cm wide by 35 cm tall,

and weighing 15.7 kg. (By comparison, Sojourner is 68 cm x 48 cm x 28 cm and

10.5 kg, and the concept prototype 2003 rover, FIDO¶, is roughly 1.5x larger in

every dimension, weighing in at 37 kg (including instrument payload) and standing

100 cm x 75 cm x 45 cm tall [54],[11].) As mentioned above, Rocky7 features a six-

wheeled rocker-bogie suspension. This type of chassis enables the rover to surmount

obstacles 1.5 wheel diameters tall‖ while the electronics box in the vehicle’s center

experiences only the averages of the suspension’s contortions, remaining mostly level.

The suspension consists of five passively pivoting links, assembled in the following

manner: The bogie connects the rear∗∗ pair of wheels on each side. The rocker on

each side couples the bogie with the “free”—and in this case, steering—wheel, and

Figure 5.1: The Rocky7 Prototype
Microrover, developed at JPL to
test technologies for future missions.
He is pictured here with his mast
raised in the JPL MarsYard, an out-
door testing arena featuring simu-
lated martian terrain.

§Rockies 5 and 6 were never built, but their names serve as placemarkers for how their
designs fit into microrover evolution.
¶Field Integrated Design & Operations
‖Rocky7’s wheels are Sojourner spares and are 13 cm across; the 2003 rover is expected

to have at least 20 cm diameter wheels.
∗∗It may appear in the image of Rocky7 in Fig. 5.1 that the coupled pair of wheels are

on the front of the vehicle, when in fact the “arm” side of Rocky7 is defined as the rear.
During testing, we even drive Rocky7 in this direction, “backward,” 99% of the time. Note
that this coordinate frame definition is reversed from Sojourner’s body frame.
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A Closer Look at the Rocker-Bogie Mechanism

Figure 5.2: Photo of Rocky 1. This
demonstration robot consists solely
of the rocker-bogie mechanism, sans
differential. The bogies are to the
right in this image.

Figure 5.3: Photo of Rocky 4.2. This
software development model shows
the differential (right, behind the
cylindrical APXS mockup). The bo-
gies are to the left in this image.

(both images courtesy JPL)

pivots on a “jeff tube”†† which runs through the chassis box and joins the two sides.

Finally, the differential connects the free wheels’ end of the rockers and is mounted

on the front of the chassis box. (See Figures 5.2, 5.3.) The rover’s top speed is

roughly 1.7 cm/sec. Rocky7’s other, un-Sojourner-like features are prompted by

the requirements for future missions. The rover boasts three stereo pairs of cameras

for navigation—two body-mounted front and rear, and one on a deployable 1.2 m, 3

degree of freedom (DOF) mast—as opposed to Sojourner’s body-mounted cameras

and laser striping system. (The mast can only be fully deployed when the rover

is stationary, however. The mast has an intermediate raised position which it can

hold while the rover is in motion, with the drawback that in this position, the

mast is unable to pan, and can tilt only within a reduced range.) Besides a flight-

like “gyro”‡‡ and odometry sensors, Rocky7 also uses a photovoltaic cell-based sun

sensor for absolute heading measurement. The 2003 rover is planned to feature

a permanently-deployed mast carrying a wide-baseline stereo pair of cameras for

navigation (as well as various bore-sighted instruments), and will most likely also

use some type of sun sensor for determining her absolute heading. To complete the

††This is simply a tube which connects the two sides of the rover’s rockers, incidentally
used to hold the RHU’s for Sojourner. Why “jeff tube?” Because, when a JPL engineer
was told to come up with a name for it, he replied, “Oh, you mean like ‘Jeff’?”
‡‡actually, a turn rate sensor
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Rocky7 Sojourner 2003 rover
size 60 cm x 50 cm 68 cm x 48 cm 145 cm x 120 cm

x 35 cm x 28 cm x 60 cm
mass 15.7 kg 10.5 kg 70 kg

wheel 13 cm dia. 13 cm dia. 20 cm dia.
speed 1.7 cm/sec 0.7 cm/sec 6 cm/sec?
CPU 68060 @ 100 MIPS 80C85 @ 100 KIPS R3000 @ 10 MIPS
mem 16 MB 752 KB 6 MB

OS VxWorks r© none VxWorks r©

navig mast stereo pair body stereo pair mast stereo pair
cams 2 body stereo pairs laser striping system 2 body stereo pairs
cam mast: 43.7◦ × 33.7◦ body: 127.5◦ × 94.5◦ mast: 45◦?

FOV body: 103.0◦ × 94.2◦ body: 120◦?
cam mast: 512 × 480 body: 768 × 484 mast: 512 × 512?
res† body: 384 × 240 body: 512 × 512?

base- mast: 10 cm body: 12.6 cm mast: 15 cm
line body: 5 cm body: 10 cm

Table 5.1: Comparison of Rocky7 with Sojourner and proposed 2003 rover

list of features, though not relevant for navigation, Rocky7 also carries a short, 2

DOF arm with clamshell scoops and an integrated fiber optic cable for an internally-

mounted spectrometer, and can carry an additional instrument on the end of his

mast, for placement on a rock or on soil in back of the rover.

For computation, Rocky7 is fitted with a 68060 CPU in a 3U VME chassis,

running at approximately 100 MIPS, and features 16 MB of memory. (Continuing

the comparison, Sojourner used a 80C85 CPU at 100 KIPS, with 752 KB total

memory; the 2003 rover will use an R3000 at 10 MIPS, and likely will have 6 MB of

memory. The increased memory and computational power on-board Rocky7, while

still providing flightlike constraints, allows for more speedy testing and timely im-

plementation of non-optimised experimental code.) The majority of the electronics,

motors, and sensors are COTS∗ components, with a minimum of custom adjustment.

Rocky7’s operating system is Wind River’s VxWorks r©, and his on-board software
∗Commercial Off-The-Shelf
†The table shows the full resolution of the cameras. Vision processing, however, may

be done at a different resolution. On Rocky7, for example, obstacle detection is done at a
resolution of 128 × 120 for the mast cameras, and 96 × 60 for the nav cameras, primarily to
speed processing time. These resolutions represent two levels removed from full resolution
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is written in C and C++, in part using Real Time Innovation’s ControlShell r© envi-

ronment. ControlShell provides a graphical interface for designing interacting finite

state machines and data flow block diagrams for a real time system, and manages a

database and program execution during operations. In addition to these on-board

faculties, the rover is operated using a suite of off-board (“ground-based”) software,

including WITS‡, developed by Paul Backes at JPL, as our rover control worksta-

tion; SCE§, developed by Steve Peters at JPL, as the executive; and SCE-forward,

also by Steve Peters, to shuttle commands and telemetry between the rover and

WITS/SCE. The ground-based software is written in Java and Lisp.¶

To round out Rocky7’s hardware system description, the rover is powered by

rechargeable NiCad batteries (4 strings of 4 batteries each), aided by a Si solar

panel, for a yield of about 35W on average. (By comparison, Sojourner’s primary

power source was a GaAs solar panel, aided by non-rechargeable Li thionyl chloride

batteries, yielding roughly 16W peak. The precise power budget for the 2003 rover

has not yet been finalised, but her primary power source will be a solar panel,

as well as rechargeable Li ion batteries.) Unlike the true Mars rovers, Rocky7’s

environmental conditioning strives to keep the rover cool in hot desert climates, not

warm against Mars’ deep chill. Thus, rather than boasting aerogel insulation and

heaters, the rover’s electronics chassis is shaded by a raised solar panel and cooled

by nine chassis-top fans, which together keep the electronics box temperature below

70◦ F. The rover communicates with his ground station via either an ethernet/serial

cable, or a wireless ethernet system, depending upon the requirements of the test.

The vehicle, as a testbed for technologies for future missions, carries an evolving

set of on-board software, developed by the Long Range Science Rover Task. At the

time of writing, the vast majority of the software resided within the aforementioned

ControlShell environment. This software includes everything from device drivers to

in a pyramid processing scheme; each level (reducing resolution by a factor of 2 in each
dimension) reduces processing time by roughly a factor of 8 [46].
‡Web Interface for Telecience
§Sequencing and Command Executive
¶SCE and SCE-forward, originally written in Lisp, have now been ported to C++ and

will soon reside on-board the rover.
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high level functionality. Key to the work presented here are several pieces of vision

processing code, which produced range images‖ from full stereo. The algorithms

were originally developed by Larry Matthies and coded by Todd Litwin; the ver-

sions used on-board Rocky7 were adapted by Bob Balaram [49],[48]. In brief, given

a stereo image pair, the image processor measures image similarity via correlation

windows within a fixed disparity search range, then estimates the disparity for each

pixel independently. The disparity estimate is refined using a parabolic fit to es-

timate the subpixel disparity. Finally, the disparity map is smoothed, and each

pixel’s final disparity value is used to produce the pixel’s X-Y-Z coordinates via

triangulation. A second processing step detects positive∗∗ obstacles within the re-

sulting rangemap. Another piece of code which proved invaluable was Clark Olson’s

localisation algorithm [59]. This function allows the rover to estimate his motion by

scanning a given target point with the mast-mounted cameras, both prior to and

after a short traverse, then comparing the binned elevation maps using a best-fit

Hausdorff measure. Since Sojourner’s measured error in dead-reckoning was on the

order of 5-10% of distance travelled for each traverse, the periodic updates to the

rover’s estimation of his position available from the localisation algorithm greatly

increase confidence in the rover’s ability to reach his goal, assuming an appropriate

navigator is available.

5.3 Challenges for Wedgebug

There are several pieces to such an “appropriate navigator.” At the highest level

is the grand planner, charting the general regions for traversal and taking into ac-

count obstacles or otherwise undesireable regions on a grand scale. For the class

of microrovers with which we are concerned, these obstacles/terrain features are on

the order of > 500 m in length, roughly. The typical mission scenario calls for the

grand planner to be Earth-based, customarily a team of scientists and rover opera-

‖We here use “range image” and rangemap interchangeably.
∗∗As described in [48]: “Positive obstacles are those that extend upward from the nominal

ground plane, like rocks, bushes, and fence posts. ‘Negative’ obstacles extend downward,
like potholes, man-made ditches, and natural ravines.”
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tors/engineers, working from orbital or descent imagery. Next is a high-level path

planner, which is capable of charting a path through rough terrain, to the regions or

waypoints designated by the grand planner. For Sojourner, this level was off-board

as well, consisting of the team of “Rover Drivers” at JPL. However, for future mis-

sions, since the rover will be expected to traverse much longer distances between

communication opportunities with Earth, this functionality must be migrated on-

board the rover. This level—the autonomous on-board path planner—is the focus

of the work presented here. Finally, the lowest level is the piloting algorithm, which

executes the path generated by the path planner. This level contains the control

laws for actual rover motion, as well as ideally some measure of fault tolerance, such

as a hazard avoidance scheme in case obstacles were missed by the path planner’s

sensors. Rocky7’s piloting algorithm, like Sojourner’s, consists of two switchable be-

haviours: a “go direct” mode, which executes the given commands without explicit

obstacle sensing; and the “go to waypoint” mode, which includes several heuristic

sub-behaviours to avoid detected obstacles and seek the given waypoint.†† Work is

currently underway to develop a better piloting algorithm for Rocky7, capable of

intelligently servoing on a path or a string of waypoints while avoiding obstacles.

We thus turn our attention to the challenges presented for developing and im-

plementing a practical high-level path planner for flight-class planetary microrovers,

and Rocky7 in particular. Although the Wedgebug algorithm described in Chapter

4 is an important step toward a practical planner, it still does not quite capture the

complexities of the real world. For instance:

• The real rover is not a point robot with omnidirectional motion capabili-

ties, and it moves in “2 1/2” dimensions over rough terrain rather than the

theoretical 2. The real size of the rover is addressed in the “RoverBug” im-

plementation (see Section 5.4) by calculating the obstacles’ “silhouettes”: the

smallest polygon bounding the projection of each SE(2) obstacle onto <2.

††The names for these two modes are not official; Sojourner did not have a formal “go
direct” mode (instead, explicit “move” or “turn” commands were given), and Rocky7’s
analogue to Sojourner’s “go to waypoint” command is the command, “go via.”
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• Rovers have notoriously poor dead reckoning abilities [54], yet the algorithm

requires the rover to maintain accurate positioning to recognise both the goal

position and when an obstacle has been circumnavigated. (Sojourner was un-

able to maintain an accurate model of her position within a global coordinate

frame.) The localisation algorithm mentioned in Section 5.2 helps maintain

Rocky7’s knowledge of his position.

• The mast imagery can “see over” many obstacles: the martian terrain so far

encountered has featured fields of rover-size rocks. These obstacles block mo-

tion, but not necessarily sensing, which adds complexity beyond that captured

by the “wall model” of typical theoretical obstacles.

• Rocky7’s mast is limited (in the current implementation of its obstacle detec-

tion software) in its ability to sense obstacles within 1-1.5 m of the rover. The

obstacle detection algorithm (described in Section 5.5) essentially searches for

steps in elevation, which are not easy to detect while looking straight down on

the tops of rocks. As a result, the BF mode of Wedgebug has been modified

to make maximum use of the near-sighted body cameras.

• Wedgebug assumes an environment with “binary obstacles”—that is, areas

are labelled as traversable or forbidden, with no middle ground or continuum

of values. Although this limitation is not specifically addressed by RoverBug,

it is possible to define “risk levels” which can be designated by ground-based

operators, and then used to tune which areas are deemed too risky for traversal

at that juncture.

5.4 RoverBug

In response to these challenges, we have developed the “RoverBug” algorithm, a ver-

sion of the Wedgebug algorithm which has been tuned and modified for the Rocky7

vehicle described in Section 5.2. In this section, we discuss the most significant

changes made during the migration from Wedgebug to RoverBug.
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(a) (b) (c)

Figure 5.4: Sample image and range data from body-mounted stereo pair. (a)
Image from left camera of stereo pair. (b) Elevation map of pixels (in greyscale),
determined using stereo triangulation (white pixels indicate no data). (c) Overhead
view of elevation map (rover is at left). The pixels marked in the image (which
correspond to the black “blob” in the overhead plot) show where an obstacle was
detected.

5.4.1 The Eyes Have It

The primary driver behind many of the adaptations required for the RoverBug im-

plementation is the nature of Rocky7’s sensor suite. For purposes of path planning,

the most useful sensors on board the rover are the cameras, which produce stereo-

derived rangemaps of the robot’s surroundings, and a sunsensor, which returns the

rover’s absolute heading. As previously discussed, a localisation algorithm uses the

cameras to return odometry-like information. Of these sensors, arguably the most

important (and most idiosyncratic) are the cameras. Rocky7 is fitted with three

stereo pairs of cameras, each with different properties, image footprints, and utility.

The two pairs of body- (or chassis-) mounted cameras, called the “nav” cameras, are

fixed in place, unable to be panned or tilted. They each have roughly a 103◦ × 94◦

field of view (FOV)‡‡ with a 5cm baseline, and are mounted on the front and rear

of the vehicle just under the solar panel, 0.31m above the ground and tilted 40◦

down from the horizontal(see Fig 5.4 for example data). The mast stereo pair, on

the other hand, can be panned and tilted (by gross motion of the mast shoulder and

elbow joints). The mast cameras have a 43.7◦× 33.7◦ FOV, are separated by 10cm,

and are mounted 1.42m above the ground (see Fig 5.5 for example data). Although

‡‡However, stereo range data can only be produced within an 80◦ (horizontal) FOV, due
to the fisheye lenses on the body-mounted cameras.
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Figure 5.5: Sample image and range data from mast-mounted stereo pair. The
middle image is from the left camera. The upper left and right plots depict the
depth and elevation maps, respectively, and the lower plot is an overhead view of
the elevation data. The pixels marked in the image show where obstacles were
detected. Also shown are the obstacle convex hulls and silhouettes, as well as a
path computed through the wedge.

Rocky7’s mast-based stereo pair provides a higher vantage point for imagery than

the body-mounted cameras, and thus potentially allows more distance to be covered

between sensor queries, the footprint of the mast cameras is not a perfect wedge,

with the rover at the apex. Although the mast can certainly image regions close to

the rover, the limitations of the Rocky7 implementation of the obstacle detection

algorithm used (described in [45], [48]) do not allow for robust obstacle detection

within roughly 1.5 m of the rover.

A choice must be made whether to use a single mast “wedge view” for path

planning, or whether to let a single “wedge” be a composite of contiguous views

taken using a set pattern of pan and tilt angles (see Fig. 5.6 for an example of a

mast multi-view “wedge”), or even to use a combination of mast and nav camera

views. The latter option provides information about obstacles directly in front of the
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(a) (b)

(c)

Figure 5.6: Results from a multi-image “wedge” view. (a) Left images from the
mast-mounted stereo pair (b) Pixel elevation map (greyscale) determined using
stereo triangulation (white pixels indicate no data) (c) Overhead view of elevation
map, with detected obstacles’ convex hulls and corresponding silhouettes, and a
path computed through the data from the four combined views

rover, missing in the other options. However, it must be emphasized that since a nav

camera view cannot be changed without moving the rover, this option is generally

unavailable for the “virtual” modes of Wedgebug. (In addition, it should be noted

that the Rocky7 rover’s lack of side-viewing proximity sensors of any kind greatly

impacts our implementation of the boundary following mode.) We have chosen to

implement the capability of utilising multiple views as a single wedge, including

adding a forward-looking view from the appropriate chassis-mounted stereo pair.

However, in the interest of demonstrating the ability of the path planner to function

using a minimum number of sensed views, in general we have defined a “wedge” to

be a single mast view, plus a single chassis-camera view. (Wedges in any direction

other than straight towards the goal consist solely of a single mast view.)
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5.4.2 High Vantage Advantage

Using the mast cameras for path planning yields the advantage of being able to

“see over” many of the surrounding rocks (see Fig. 5.5). As a result, rather than

being limited to the simple “star-shaped graph”—consisting of edges radiating out

from the rover’s position x to the sensed obstacle boundary endpoints—used by

Wedgebug, the RoverBug algorithm’s LTG is truly the portion of the tangent graph

limited to the visible wedge (see Fig. 5.7). Therefore, RoverBug uses an A* algorithm

[63] to search this richer LTG for the locally optimal (shortest length, considering

only the visible obstacles) path to T .

Since the planner now has a model of the terrain within the entire wedge (in-

stead of a single range contour incorporating only the closest obstacles), the subpath

should no longer be generated by simply returning the first “leg” of the computed

path (i.e., the first LTG node encountered, defined as the “focus point” for Wedge-

bug). Instead, we produce a subpath by truncating the shortest path to T at the

edge of the visible region, along the arc C demarcating the maximum wedge range

(see Section 5.5 for an explanation for how this range is chosen). Using this tech-

nique, it is no longer necessary to add the LTG node Tg along the vector toward

the goal, since a subpath directly towards the goal (in the case of no intervening

obstacles) can be generated by simply truncating the straight line path between x

and T .

5.4.3 Plight of the Nav Cams

Unfortunately, the advantages of using the mast cameras for longer range planning

are not as apparent in the realm of the nav cameras. Although the nav cameras

can “see” beyond some obstacles, their lower vantage point prevents the generation

of as rich an obstacle list. This shortcoming is ameliorated when the nav view

is combined with a mast view, as in our RoverBug wedge definition (which also

combats the mast cameras’ inability to detect obstacles close to the rover).

However, another significant disadvantage of the nav cameras is that they are

unable to be panned, without turning the rover itself. Use of the mast cameras is
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Figure 5.7: Illustration of the differences in nodes used for motion planning between
Wedgebug (a) and RoverBug (b). In Wedgebug, the obstacles block both motion
and sensing. RoverBug, on the other hand, allows for obstacles which block motion,
but not sensing. Note that RoverBug also does not consider non-tangent nodes on
the boundary of the visible wedge.

not appropriate for those situations in which the rover is expected to skirt obstacle

boundaries, which requires awareness of the rover’s proximity to close obstacles. In

Wedgebug, these situations comprise the “normal” BF and “sliding” MtG subseg-

ments. In the case of RoverBug, the need for circumnavigating an obstacle in such

a manner arises when forward progress toward the goal is impeded by an obsta-

cle which spans the width of the visible region. We have designed an attempt to

achieve the objectives of the “normal” BF mode using generally only the nav cam-

eras, though more work is needed to reduce the deleterious effect upon allowable

obstacle density for this technique to succeed.

5.4.4 The Rover Is Not A Point

Rounding out the high-level discussion of the differences between RoverBug and

Wedgebug is a description of how obstacles are handled, in light of the fact that 1)

the rover is not a point robot, and 2) the rover can sense much of the extent of the

visible obstacles, rather than simply the range to the closest edge. The obstacles are

initially detected, using a step/slope model, and segmented into distinct obstacle

“blobs” (collections of coordinate points belonging to a single detected obstacle) by

a stereo vision algorithm developed by Larry Matthies and Todd Litwin at JPL [48].
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Figure 5.8: Silhouette of a C-
space obstacle.

Next, we calculate the convex hull of each “blob”

in the ground plane (assumed in this implemen-

tation to be the XY plane). Finally, we construct

the “silhouette” of each convex hull: the pro-

jection of the three-dimensional C-space obsta-

cle corresponding to the convex hull and the real

rover (see Chapter 3) onto the ground plane. (See

Figs. 5.8, 5.9.) (This technique is well-known,

often referred to as “growing” the obstacle boundaries.) We have included an em-

pirical safety buffer in the “growth” stage to account for both sensor uncertainty

and slight slippage during path execution, as well.

Once the obstacles have been “grown,” the algorithm checks whether the goal

lies within one of the “grown” convex hulls. If so, the entire convex hull is marked

as the goal, allowing the “rover driver” to designate a particular rock as a target,

say for instrument placement or analysis. Next, the algorithm determines whether

each convex hull lies entirely within the visible wedge; vertices outside the useable

region are tagged accordingly. Finally, overlapping obstacles are “melded” into non-

overlapping, not necessarily convex “super obstacles,” and this reduced obstacle list

is checked for wedge-spanning blocking obstacles: that is, obstacles which contain

vertices lying outside the bounding edges of the wedge on both sides.∗

Finally, we note that the Wedgebug algorithm’s decision whether to use “virtual”

Figure 5.9: Illustration of building a C-space obstacle/silhouette.

∗The step of “melding” overlapping obstacles may be discarded in future versions of
RoverBug, in favour of other techniques for detecting wedge-spanning obstacles. Although
the current approach has the advantage of reducing the total number of obstacle vertices, the
“melding” algorithm is complex and lengthy, and is therefore a candidate for code reduction.
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MtG or “virtual” BF , when faced with a blocking obstacle, essentially relies upon

the measurement of the tangents to the obstacle at the edges of the visible region—

arguably an imprecise measurement in the real world. Thus, we chose in RoverBug

to combine the two “virtual” components into a single “virtual sliding” (VS) mode

which serves as the transition between MtG and BF . This change has the added

benefit of reducing the overall footprint of the code, a valuable result considering

the scarcity of on-board storage.

5.5 Implementation—the Gory Details

In brief, the scenario is as follows: The rover is situated in unknown, rough ter-

rain. The remote human operator designates a goal, using, for example, panoramic

rover imagery returned earlier, descent imagery from the lander, or imagery from

an orbiter. This action sets in motion the autonomous planner. The planner—

initially in MtG mode—begins by directing the mast to image towards the goal.

Software on-board produces a rangemap from the stereo imagery, and detects “ob-

stacle points”—pixels in the range image determined to be part of an obstacle—using

a simple height/slope model within the range image. Additional functions segment

the detected obstacle points into discrete 2D connected obstacles, and computes

the obstacles’ convex hulls. The planner then computes the obstacles’ silhouettes,

searches the resulting LTG using an A* algorithm [63], and senses additional wedges

as needed to produce the first subpath. Before and after the execution of each sub-

path, the localisation procedure is invoked, to verify the rover’s new position. Then,

the rover is directed to image toward the goal, and the process repeats, incrementally

building subpaths until the goal is reached. (See Fig. 5.10 for a high-level overview

of RoverBug’s operation.) “RoverBug” is amenable to varying levels of autonomy,

from single-step paths under tight operator control, to full multi-step autonomy as

described here.

The RoverBug implementation essentially consists of three major pieces of C

code which reside within ControlShell—Obstacle Map Pre-Processing, Path Finding,
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Figure 5.10: High-level flowchart of RoverBug code. Basically, the top row rep-
resents the motion-to-goal (MtG) mode, the bottom row shows the operation of
boundary following (BF), and the loop in the upper left depicts “virtual sliding”
(VS).

and Boundary Following—tied together by an operations loop at the executive level

(within SCE). The remainder of this section will describe each piece of the RoverBug

code in turn.

5.5.1 Obstacle Map Pre-Processing

After the executive directs the rover to sense a new visual wedge, stereo triangulation

is used (as described in Section 5.2) to derive an elevation map of the visible area.

A step/slope obstacle model [45], [48] is applied to the range image, to identify

those pixels which depict a positive obstacle; these pixels are marked in a bytemap

representation. (In the case of a wedge composed from a set of distinct views, at

this point the maps for each view are combined into a single bitmap (in the ground,

rather than the image, plane) for the wedge.) This representation is then used to

segment the obstacles into distinct “blobs,” denoting separate obstacles. Next, the

X-Y-Z coordinates of the pixels marking the base and top of each obstacle are entered

into an array of obstacle points, accompanied by an array of labels indicating which

obstacle is associated with each point. (The base and top pixels are represented in

the bytemap by different symbols than the bulk of the obstacle, so as to reduce the
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size of the obstacle point array while still yielding information about the rearward

extent of the obstacle.) Finally, the convex hull of each obstacle’s set of points in

the array is computed, creating a minimal representation of the detected obstacle.

The convex hull points (with their obstacle labels) are entered in an array, which

serves as an input to the RoverBug code.

The convex hull array is processed by a RoverBug subroutine, “Work2Cspace,”

(corresponding to the block labelled “workspace → silhouettes” in Fig. 5.10). An

overview of the actions taken during this subroutine appears in Table 5.2. “Work-

2Cspace” first creates a pseudo-C-space respresentation of the obstacles by “grow-

ing” the convex hulls to approximate their silhouettes (and to include an empirical

safety buffer). The “growing” process may create an excessive number of vertices

for a given obstacle, a problem both due to the fact that an increase in the number

of vertices will increase the time required to search for a path through the obsta-

cles, and since the rover is unable to accurately execute a series of extremely short

traverses. Therefore, a minimum distance between “grown” obstacle vertices is en-

forced. Next, the algorithm determines whether the goal coordinate lies within one

of the “grown” convex hulls (denoted “GChulls”); if so, every vertex of that GChull

is labelled as a goal. This action allows the rover operator to select a particular rock,

Work2Cspace

1. “Grow” convex hulls to approximate silhouettes (GChulls)

2. Filter GChull vertices to enforce minimum distance requirement

3. Mark vertices of GChull which contains goal

4. “Meld” GChulls which overlap into composite obstacles

5. Mark concave vertices, and those outside visible region (“hidden”)

6. Check for composite obstacle with “hidden” vertices on both sides of wedge

7. If ∃ blocking obstacle, then

(a) mode → VS

(b) compute next direction to be sensed

8. Else, If mode = VS , then mode → VS2

Table 5.2: Overview of the Work2Cspace subroutine
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say, as a target, perhaps for later analysis. At this point, the algorithm determines

whether any of the GChulls overlap. In the early version of the RoverBug imple-

mentation, “Work2Cspace” simply labelled those vertices which lay in the interior

of other GChulls; the current version actually “melds” the overlapping GChulls into

(not necessarily convex) “super obstacle” polygons. (As previously mentioned, af-

ter implementing this feature, it was found that the “melding” code is complex and

lengthy; therefore, a future version may bypass this step and return to simply la-

belling “interior” vertices.) Finally, those polygon vertices which are concave and/or

which lie outside of the wedge boundaries (determined currently by “melding” the

individual quadrilaterals which demarcate each view) are labelled appropriately.

For the next step in the current implementation, “Work2Cspace” checks the final

polygon list for a “super obstacle” which spans the entire visible region (a blocking

obstacle). (This action corresponds to the two decision blocks, marked “mode?”

and “shortcut?” in Fig. 5.10) If there is no such obstacle, and the behaviour mode

is “motion-to-goal,” control passes to the “Path2Goal” subroutine. If the mode is

“virtual sliding,” then an “edge” of the previously detected blocking obstacle has

been found. The behaviour is changed to “VS2,” the closest distance to the goal

along the (near side of the) visible obstacle boundary is computed (dreach), and

“Path2Goal” is used to find an initial path around the blocking obstacle.

If there is a blocking obstacle spanning the entire wedge, then if the behaviour

mode is “motion-to-goal,” it is changed to “virtual sliding” (and if it is already

“virtual sliding,” it remains so). The next direction to be sensed by the rover is

computed (corresponding to the “compute direction” block in Fig. 5.10), and control

is returned to the executive level to carry out this command. (The response when

the behavioural mode is “boundary following” will be discussed in Section 5.5.3.)

The inputs to this subroutine include: the “workspace” convex hull vertex list,

the number of workspace obstacles, the start and goal coordinates, the number of

distinct views and their FOV polygons, and the current behavioural mode. The

subroutine also uses the following parameters: the “growth” radius, the minimum

distance between vertices (on a single obstacle), the wedge half-angle, and the em-
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parameter default value
buffer radius 0.4952m
vertex dmin 0.5m

emp. range limit 5m
αmast 21◦

αnav 40◦

Table 5.3: Default values for RoverBug parameters

pirical range limit for the wedge†. (See Table 5.3 for the default values of these

parameters used for Rocky7.)

The outputs are the final obstacle polygon list, the number of polygons, and the

array of polygon vertex labels; dreach; the index of the next direction to be scanned

as well as the “positive” sense of rotation; and the next behavioural mode.

5.5.2 Finding a Path

Once it is determined that no obstacle spans the entire wedge, a RoverBug sub-

routine called “Path2Goal” (corresponding to the “compute subpath” block in Fig.

5.10) is used to determine the locally optimal path to the goal—that is, the shortest

length path, considering only the visible obstacles. (See Table 5.4 for an overview.)

This subroutine implements an A* graph search, which is summarised as follows:

Two linked lists are maintained: a Closed list tracks the nodes of the LTG which

have been expanded, and an Open list contains those nodes which have been “vis-

ited,” but have not been expanded. Expansion of a given node V consists of finding

those nodes Y which neighbor V on the LTG; computing the “backward cost” of

a path from the current rover position x to each Y and the estimated “total cost”

of a path from x to T through Y ; and finally entering Y with its associated costs

(and with V as the “previous” node) into the Open list. The Open list is sorted by

total cost, and the node with the least total cost is moved to the Closed list and

expanded. The process is initialised by entering x into the Open list, and ends when

a goal node is entered in the Closed list. In this manner, the subroutine executes a

†This number acts as a limit on the length of each subpath, and may be used when
concerns other than the effective range of “good” stereo data arise, as seen in Section 5.6.
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Path2Goal

1. Initialise open and closed lists

2. Do (until open list is empty or V = goal):

(a) Copy top of open list (node V ) to bottom of closed list
(b) “Expand” V :

i. Find convex vertices Y adjacent to V in LTG
ii. Compute backward and total costs for each Y
iii. Add each Y to open list

(c) Sort open list by total cost

3. Construct path from closed list

4. If ∃ path to goal, then

(a) if mode = MtG , truncate path at maximum visible range
(b) if mode = VS2, mode → BF

5. Else, return Error

Table 5.4: Overview of the Path2Goal subroutine

depth-first search for the shortest path to the goal through the LTG. The final path

is found by reading out backwards from the Closed list, beginning with the goal

node; this path is truncated at the maximum allowable range to create the subpath.

In the early implementation of RoverBug, if the path search ends by exhausting

the LTG nodes in the Open list before finding a path to a goal node, the planner

switches to an ad-hoc boundary following behaviour, described in the next section.

In the current version, such a situation would herald an error condition (since be-

ing unable to find any clear paths indicates the existence of a blocking obstacle,

which should have been found by “Work2Cspace”), and the algorithm would halt.

Otherwise, if the behaviour mode is “VS2,” it is switched to “boundary following.”

The inputs to “Path2Goal” include: the obstacle polygon vertex list and labels,

the number of polygons, the start and goal coordinates, the global parameter dLeave,

the empirical range limit, and the current behaviour mode.

The output consists of the list of waypoints constituting the subpath, the number

of waypoints, and the next behaviour mode.



135

5.5.3 Boundary Following

In the early implementation of RoverBug, which was meant as a validation of the

LTG approach, not much consideration was given to the boundary following mode,

particularly since it would necessarily rely upon the low-mounted, fixed nav cameras.

Therefore, when faced with a blocking obstacle, the rover was directed to advance

to the end of the subpath which brought the rover closest to the goal, and then

simply to move 2m left or right (relative to the direction towards the goal from x),

based upon in which half of the wedge the last waypoint lay. While the subpath

could be executed using direct rover motion commands, the 2m sidestep always

used the “Go-to-Waypoint” algorithm in order to avoid collisions. The rationale

was that, given the types of terrain which we expected the rover to encounter, it

was possible that a blocking obstacle could be avoided by simply gaining a different,

nearby viewpoint.

However, in order to bring RoverBug back into alignment with the Wedgebug

theory, and to restore a notion of convergence, the current implementation includes

a boundary following subroutine (depicted by the bottom line of Fig. 5.10, and

sketched in Table 5.5). The underlying structure echoes the “virtual sliding” loop

described above, replacing swiveling the mast with turning the rover. Although

using rover motion to obtain additional views is not ideal for many reasons, at

the very least the vehicle’s center of rotation is near the forward-driving end, so

the collection of nav camera views nearly form a circle with a consistent maximum

range.

At the start of each boundary following step, the rover turns to take a nav image

towards the goal. (It should be noted that by design, the nav view should contain

part of the previously sensed obstacle boundary, to ensure that no potential passage

is missed.) After executing “Work2Cspace,” the planner has determined whether

or not an obstacle spans the visible region. If there is no such obstacle, the mast

is deployed, and senses a wedge in the direction of the goal. If again there is no

blocking obstacle, then the planner searches for an LTG node V which satisfies

the leaving condition: that is, if d(V, T ) < dreach, then RoverBug resets dLeave to
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BoundaryFollowing

1. Sense and process nav camera image toward goal

2. If executed loop, return Goal Unreachable

3. If @ blocking obstacle, then

(a) If rover is facing goal, then

i. Deploy mast; image towards goal
ii. If @ blocking obstacle

A. If ∃ node V which satisfies leaving condition, then mode→MtG ;
return

iii. Else, mode → VS ; return

(b) Else, compute farthest rover can progress along boundary; return

4. Else, compute direction to turn rover for next nav view

5. If new direction will sense previously sensed area, return Error

Table 5.5: Overview of the BoundaryFollowing subroutine

d(V, T ), and changes the behaviour mode to “motion-to-goal.” Otherwise (in the

cases that no such node can be found or there exists a blocking obstacle in the mast

view), the behaviour switches back to “virtual sliding,” preserving the previously

established “positive” sense of rotation and sensing additional views only in this

direction. In this manner, the planner may produce a shortcut around the blocking

obstacle, taking advantage of the fact that the mast has already been deployed.

If, on the other hand, there is a blocking obstacle in the nav view, the rover

is turned by twice the nav wedge half angle, αnav, and a new view is sensed and

combined with the prior wedge. Again, if there is still a blocking obstacle, the rover

repeats this action, turning and sensing a new view. If the rover has turned so

far that it is resensing a region already included in the combined wedge (tracked

using the sunsensor), and still cannot find a clear path, the algorithm halts and

signals an error condition. In addition, if at any time during boundary following

the rover senses the point Vloop and detects that it has circumnavigated the obstacle

(using sunsensor data to track a “winding number”-like parameter), the RoverBug

algorithm halts and signals that the goal is unreachable. The winding parameter

records the difference between the rover’s current heading and its “original heading,”
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represented by the vector between Vloop and the goal of the VS2 subpath, as the

rover traverses around the obstacle. The object is to ensure that the rover will take

action only if Vloop is encountered in the correct orientation; that is, the algorithm

will not halt prematurely if the (concave) obstacle boundary curves back towards

Vloop.

Finally, in the case that the rover has turned and detects no blocking obstacle,

the planner computes the farthest the rover can advance along the (former) blocking

obstacle boundary, and updates dreach. The rover executes this subpath, and begins

a new boundary following step.

The inputs to “BoundaryFollowing” include: the obstacle polygon list, labels,

and number of polygons, the start and goal coordinates, dreach, and the current

behaviour mode.

The outputs include the list (and number) of waypoints for the subpath, and/or

the next direction to be scanned by the nav or mast cameras, and the next be-

havioural mode.

5.5.4 Tying It All Together

The executive level within SCE manages the high-level loop which drives the Rover-

Bug planner until the goal is reached or the algorithm otherwise halts. This level,

in essence, acts as a “switch” statement, invoking actions based upon the current

behaviour mode of the planner. To wit: if the planner has returned a subpath, SCE

directs the rover to execute the list of waypoints, using either direct rover motion

commands or the “Go-to-Waypoint” algorithm. (The “Go-to-Waypoint” algorithm

is generally used for the first waypoint, if the wedge towards the goal does not

include a nav view.) At the end of the subpath, if the behaviour mode is “motion-

to-goal,” the rover executes the second step of the localisation algorithm (imaging

back toward x) and updates its position estimate, then images toward the goal for

the first step of the next localisation command. Next, if the behaviour mode is

• motion-to-goal or virtual sliding, then the executive deploys that mast and

senses a wedge in the direction indicated by the given vector index k and the
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positive sense of rotation. That is, the mast senses along the vector ~vk, where

∠(−→xT ,~vk) = 2kα, k ∈ Z. The images are processed using the stereo triangu-

lation and obstacle detection code described earlier, and if the behaviour is

“virtual sliding,” the resulting obstacle list is combined with the prior data to

create a conglomerate wedge.

• boundary following, a secondary cue indicates whether the executive should

turn the rover and take an image with the nav cameras (in a similar manner

as above), or should deploy the mast and image towards the goal.

In either case, after taking the appropriate action, the executive again calls the

RoverBug function, and awaits its next directive.

5.6 Results, or Rocky Goes For a Sunday Drive

The early implementation of RoverBug has been tested extensively in the JPL

MarsYard, as well as in natural arroyo terrain, validating the “motion-to-goal”

portion of the RoverBug planner. The wedge was defined as a single mast view,

with the tilt angle chosen according to the downrange footprint of a mast camera

FOV. We chose a tilt angle of 25◦, which yields a theoretical footprint from 1.6m

to 8.7m. (The actual coverage was somewhat larger in both directions, with the

densest range data from roughly 1.5m up to 6m.) A range limit R for each wedge

was calculated using the minimum of a) the theoretical maximal range for the FOV,

and b) the range at which an obstacle 18cm tall subtends 10 pixels; for the current

mast setting, the range limit was 7.8m. Later testing indicated that localisation was

most effective for traverses within 5m, so this distance was added as an empirical

range limit. The mast camera tilt angle was adjusted accordingly, to 29◦.

Figure 5.11 shows the results of one typical multi-step run in the MarsYard. The

MarsYard is an outdoor area, roughly 20m square, which features a sandy substrate

and volcanic rocks, simulating martian terrain. The rocks are arranged according

to a computer-generated pattern, meant to simulate the sizes and placements of
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Figure 5.11: Results from a multi-step run in the JPL MarsYard. The path begins in
the lower right corner of the image, toward a goal approx. 21m distant in the upper
left. Each wedge depicts a rangemap produced from mast imagery, and extends
roughly 5m from the imaging position. The obstacles are marked by a black convex
hull, and a grey silhouette. Each subpath ends with an apparent “jag” in the path;
these are not in fact motions, but rather the result of the localisation procedure
run at the conclusion of each step. The second line echoing the path is the rover’s
telemetry for the run.
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rocks for the type of terrain encountered by Viking Lander-1 (VL1).‡ The goal

was approximately 21m distant from the initial position, and R for each wedge

(the radius of useable data) was 5m. The rover’s initial position was in the lower

right corner. As in Fig. 5.5, the convex hulls and silhouettes were computed within

each wedge view, and a subpath generated as described above. This subpath was

executed before the rover’s mast was redeployed for localisation. The results of the

localisation procedure appear in the figure as “jags” in the path at the end of each

subpath. These features are not actual motions, but rather updated final positions.

The rover was next directed by the planner to image toward the goal from his

new position. This process was repeated, for a total of four wedges and subpaths,

until the goal was achieved. The resultant multi-step path runs from lower right to

upper left. The time taken by this entire traverse—from the initial sending of the

autonomous navigation command (with a 1m tolerance in achieving the goal) to the

completion of the final localisation step—was 57 min. and 47 sec. On average, the

planning of each subpath (from the time the planning command was sent to the

time telemetry was received) took 3.25 sec. For comparison, the first localisation

procedure (including both pre-traverse and post-traverse steps) took 6 min. Vision

processing, as well as the slow traverse speed of the rover, contributed most of the

time spent during this run.

Note that the first 1–1.5m at each rover position was not sensed, due to the

choice of tilt angle, which in turn was based upon the limitations of the mast-based

obstacle detection process. In the particular run shown in Fig. 5.11, direct motion

commands (e.g., drive forward x meters) were sent to the rover to execute each

subpath.

However, in later runs, e.g., the long traverse shown in Fig. 5.12, the “Go-to-

Waypoint” algorithm was used as an ad-hoc collision avoidance mechanism when the

rover drove from its current position to the first subpath waypoint. This traverse,

which took place in the arroyo near JPL, was toward a goal 44m distant. As can be

‡At present, only the largest rocks have been placed; in the future, smaller rocks will
be used to segment the MarsYard into regions simulating VL1, VL2, and Pathfinder-like
terrains.
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Figure 5.12: Results from a multi-step run in the arroyo near JPL. The path begins
in the lower left corner of the image, toward a goal approx. 44m distant in the
upper right. Each wedge depicts a rangemap produced from mast imagery, and
extends roughly 5m from the imaging position. The obstacles are marked by their
convex hulls and silhouettes. Again, the localisation procedure updates the position
estimate after most steps. In this run, however, the initial waypoint of each subpath
is executed using the “Go-to-Waypoint” command, to avoid collisions with unsensed
obstacles in the first 1.5m of each wedge. After the fourth wedge, this command
caused the rover to become “stuck” near a rock, causing the apparent lengthy detour
from the prescribed path. The second line echoing the path is the rover’s telemetry
for the run.
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Figure 5.13: A typical view from the nav cameras during the 9-step run

seen in the figure, the use of the “Go-to-Waypoint” command resulted in one case

(after the fourth step) in the rover becoming “stuck” near a rock for some time,

resulting in a long apparent detour away from the intended path (as the drift in

the rover’s position estimate increased). The heuristic employed by the collision

avoidance mechanism caused the rover to repeatedly turn away from, then towards

the same rock in its efforts to reach the first subpath waypoint. In fact, the run

was temporarily aborted at this point, then continued with the rover in a slightly

different position (and with its position estimate reset). Otherwise, as can be seen,

the extended traverse proceeded smoothly. Fig. 5.13 shows a typical view from a nav

camera during the run. It should be stressed that the use of the “Go-to-Waypoint”

algorithm is in response to the need for collision avoidance during these experiments,

and is not part of the RoverBug implementation. A better path-following algorithm

(the “piloting” level described in Section 5.3) is needed in order to allow collision

avoidance without adversely affecting the convergence properties of the RoverBug

algorithm.§

Thus, the general approach of the RoverBug algorithm has been validated through

experimentation, and yields good performance in navigation to distant goals.

To give a very rough estimate of the memory requirements of the RoverBug

algorithm, currently, the Work2Cspace code uses 82 KB of static memory, and

Path2Goal uses 89.6 KB. In addition, Path2Goal utilises roughly 5.1 KB of dynam-

ically allocated memory. However, no effort had been made to optimise the memory

§Indeed, the performance of any high-level path planner would be improved by a better
piloting algorithm.
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usage of this experimental code, and straightforward modifications can significantly

reduce the memory load. For example, if the code is modified to dynamically allo-

cate the currently static memory, then for a typical case (10 obstacles per wedge,

with 25 vertices on each obstacle, resulting in a path with 10 waypoints) the memory

usage drops to a total of 8.5 KB for Work2Cspace, and 15.1 KB for Path2Goal.

5.7 Summary

This chapter describes the Rocky7 testbed vehicle, which provides a strong ana-

logue to flight planetary microrovers. In particular, the sensing suite, consisting

primarily of stereo pairs of cameras mounted at two heights with differing fields of

view, accurately captures the sensing scenario expected for the Mars rover missions

currently being planned. Due to the idiosyncracies of this sensing paradigm, as well

as practical considerations, the Wedgebug algorithm described in Chapter 4 must

be modified in order to create a practical implementation. We discuss the specific

changes necessary, and describe the implementation, dubbed RoverBug, in some de-

tail. Finally, we present results from traverses in the MarsYard, an outdoor martian

terrain simulant, and in natural (arroyo) terrain. These results validate the LTG

approach using actual data, and show good performance in martian-like terrains.
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Chapter 6

And Now We Have Arrived, But Have Only

Just Begun

path·find·er (păth́ f̄ıń dr) n. One who discovers
a way through or into unexplored regions.

—The American Heritage Dictionary

6.1 Conclusion

Although the autonomous robots dreamed of by science fiction may yet be far off

into the future, the time is coming soon when robots will explore distant worlds with-

out constant human oversight. These robots must be able to manoeuver in rough,

unknown terrains and to reach their designated targets safely and successfully, us-

ing autonomous sensor-based motion planning techniques. The Sojourner rover—

despite her simplicity—represented the most autonomous spacecraft launched up to

that time (December 1996), with her ability to determine her own route based on

sensor information. Her pathfinding mission embodied the first tiny cleat marks∗

toward the full realisation of robotic planetary exploration.

Future Mars explorers will continue to operate under severe constraints com-

pared to their Earthbound counterparts, so the key to mission success will be al-

gorithms which adhere to these constraints yet produce highly capable machines

able to traverse extended distances through rough, unknown territories. We have
∗or, in human terms, baby steps
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developed the Wedgebug algorithm, a sensor-based motion planner tuned to the

constraints of flightlike microrovers, such as limited computational resources and

scarce memory, yet provably complete and correct. This planner also has the ad-

vantage that it is able to effect locally optimal (shortest length) paths, considering

only the visible obstacles. Wedgebug is appropriate for point robots, equipped with

range-finding sensors having limited downrange and angular scope, inhabiting un-

bounded planar environments, where the region surrounding the goal (including

the robot’s initial position) is populated by a finite number of obstacles, each with

piecewise C1 boundaries. Wedgebug utilises a streamlined, temporary local world

model—consisting primarily of sensed obstacle boundary endpoints—and a small

set of global parameters to ensure convergence to the target while minimising the

algorithm’s memory requirements. In addition, Wedgebug incorporates automatic

gaze control, sensing only those regions required for efficiency, which provides the

dual benefits of minimising computationally- and memory-expensive sensing while

conserving motion, which is costly due to energy use, drift, slippage, and other

localisation errors.

We have also developed an extension to Wedgebug, denoted RoverBug, which

is directly relevant to the Mars missions currently being planned. The RoverBug

planner is the implementation of the Wedgebug concept on an actual prototype

planetary microrover, the Rocky7 vehicle developed at the Jet Propulsion Labo-

ratory precisely for such pursuits. While retaining many of the key properties of

Wedgebug: being correct, complete (with respect to the obstacle “silhouettes”) and

producing locally optimal paths while minimising computation, sensing, and rover

motion; RoverBug also takes into account the idiosyncracies of the microrover-class

sensor suite, including the ability to “see over” many obstacles and the lack of pan-

able proximity sensors. The approach has been verified by experiments in natural

terrain, including test sites both in an arroyo near JPL and in the MarsYard, an

outdoor martian terrain analogue. As a consequence of these developments, we have

delineated many of the issues and constraints faced by motion planners for planetary

microrovers, which we hope will serve as a useful guide for additional work in this
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area.

Finally, we have contributed a corrected, more detailed proof of a key result†

required for the proof of completeness for both Wedgebug and the prior Tangent

Bug algorithm developed by Kamon, Rimon, and Rivlin [21], and have extended

the domain of application to a broader set of obstacles and environments. Several

sensor-based motion planners, which depend upon the use of distinct modes to

escape dead-ends while traversing towards a goal, rely upon the claim that there are

a finite number of such dead-ends in order to prove completeness. We have proven

this conjecture for the case of a planar environment and obstacles with piecewise C1

boundaries in not necessarily generic arrangements, with a range-bounding condition

imposed upon the robot by the planner. (This last requirement is not onerous, since

such a condition is used to track and maintain progress toward the goal.)

6.2 Future Work

Although the work presented in this thesis demonstrates an improvement in the

state of the art of motion planners for flightlike planetary microrovers, Wedgebug

and RoverBug are still just the first steps toward the goal of highly capable planners

for this class of vehicles, able to handle extensive traverses through varying types

of planetary terrain. We describe here several useful directions for future research.

6.2.1 Boundary Following

In the short term, we plan to extend our experimental validation of the RoverBug

approach by incorporating the virtual sliding (VS) and boundary following (BF )

modes described in Chapter 5, whose validation has been prevented earlier by prac-

tical constraints. The BF mode’s algorithm as given is a first attempt to compensate

for the lack of side-viewing proximity sensors on Rocky7, as well as limitations in

sensing regions close to the rover using the mast, while trying to minimise the

number of short traverses (costly in terms of causing dead-reckoning drift) and of

†originally presented in [21] with an informal proof
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mast deployments (the mast cannot be in the raised position while the vehicle is in

motion, and gross mast movements are slow). The next step is to refine this algo-

rithm, perhaps using stand-off distances from the blocking obstacle and alternate

orientations to allow the rover to view more of the obstacle without necessitating

large turns-in-place. Such refinements, besides potentially reducing the number of

expensive short steps around an obstacle, could also allow the rover to operate in

more cluttered environments than would be possible with the current approach.

6.2.2 Extension of Wedgebug to SE(2)

Wedgebug (and RoverBug) models planetary terrain as a planar configuration space,

segmented into traversable terrain, or freespace, and impassable regions, marked as

obstacles. While this representation is efficient, it does not capture other difficulties

presented by the environment, such as terrain features which pose varying risks to

traversal depending upon the rover’s orientation. Therefore, it would be desirable

to extend these algorithms to SE(2)‡. RoverBug does include a first step toward

such an extension, by computing the “silhouettes” of the obstacles. The resulting

algorithm is correct, but not entirely complete; the silhouettes may mask a passage

to the goal which could be achieved by assuming the proper rover orientation. A

short term goal would be to analyse the extension of Wedgebug to silhouettes; a

longer term research direction is the extension of the algorithm to full SE(2). Among

the implementation issues for an SE(2) RoverBug is the problem of computing an

SE(2)-obstacle from the vehicle’s sensor data, which typically returns only the face

of the obstacle in the sensor’s direction.

6.2.3 Traversability

Besides the limitation described above in the algorithms’ world model, this simple

model also does not allow optimisation of, say, the energy required to traverse a

particular patch, nor does it allow the classification of the environment into varying

risk levels for traversability. A clear evolutionary step would be the definition of

‡i.e., the space of 2D translations and rotations
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several terrain types, assigned appropriate risk levels, from analysis of visual data

using cues such as texture or slope variation. Another issue is the fact that the

planners developed here do not account for sensor uncertainty; an aspect which

could perhaps be included in the assignation of risk level to terrain types. Two

approaches for using the current algorithm with these new terrain classes are as

follows:

• Iterate the planner, first designating an initial risk level above which terrain

classes would be treated as obstacles; if no clear path can be found, raise

the risk level gradually and attempt a replan until an upper risk threshold

has been reached, in which case boundary following would be initiated (or

continued).

• Use the planner to generate an initial seed path, to be optimised over such

variables as time, energy, or risk.

Future refinements could weave consideration of traversability issues more tightly

into the fabric of the planner itself.

6.2.4 Localisation

Mobile robots are often plagued by errors in dead reckoning, the process by which

a robot uses its measurements of odometry and heading, as well as any estimates

of drift, to determine its location relative to an absolute coordinate system. This

problem is exacerbated on planetary missions (compared to earthly applications)

by the absence of GPS-like systems.§ Although the Wedgebug algorithm somewhat

ameliorates the effect of this drift by not requiring newly aquired data to be regis-

tered against a global world model, the method does bookkeep the goal position as

a coordinate point, and tracks another coordinate to determine whether the robot

has executed a loop around an obstacle. Work has been done on autonomous local-

isation techniques, including Olson’s localisation algorithm [59] and the kinematic

§There are preliminary plans in the works, however, to send a collection of GPS-like
satellites in orbit around Mars, perhaps as soon as 2001.
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state estimator developed by Balaram [3], both implemented on Rocky7. However,

further improvements in rover localisation are desirable. Similarly, issues of target

recognition arise when the rover is commanded, say, to return to the lander or to

some other previous location. In these situations, visual servoing could be used to

augment localisation.

A related issue is the designation of a target as something other than a coor-

dinate point—for example a terrain feature, a desired heading (with or without an

associated distance), or even an item of scientific interest determined by sensor or

instrument readings—and how to treat these alternate designations as goals within

the Wedgebug framework.

6.2.5 Fine Motion Planning

Once RoverBug has moved the rover to the designated goal location (within an error

radius, due to dead reckoning drift), the vehicle may need to adjust its configuration

in order to place an instrument at a particular orientation on a rock face, say,

or to image a desired feature, or to collect a designated rock or soil sample. At

this range, the non-holonomic constraints of the vehicle—ignorable for the most

part during longer traverses, since the rover is capable of turning nearly in place

and is travelling in primarily one general direction at slow speeds—come into play.

A planner specifically geared to this type of motion (“fine motion,” or “terminal

navigation”) is required. Some work in this direction has been done with the Rocky7

rover, particularly in the area of “hand-eye” coordination (coordinating the robot’s

2 DOF manipulator with visual servoing) [10], but more work could be done which

includes, for example, awareness of nearby obstacles.

A related problem is the design of a piloting level, which can accurately execute

the paths produced by the motion planner while avoiding hazards.

6.2.6 On-board Resource Management

Finally, although the Wedgebug and RoverBug planners attempt to mitigate the

scarcity of available resources—in their case, computational prowess and limited
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memory, as well as considerations of time and minimising dead-reckoning error—

much more could be done to allow a planetary rover to determine (and change)

activity plans based upon such resources as available power, communication oppor-

tunities, and maintaining internal temperature within an acceptable range. Work in

this area is underway, using the ASPEN system implemented on the Rocky7 vehicle

[2] (among other spacecraft); future work will integrate the RoverBug planner with

this scheduler, further increasing the autonomy of planetary surface explorers.
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Figure 6.1: Cartoon of Rocky7 drawn by the author, based upon a fortune cookie

received during the course of work on this thesis.
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